scholarly journals The Growth of Sodic Amphibole at the Greenschist- to Blueschist-facies Transition (Dent Blanche, Western Alps): Bulk-rock Chemical Control and Thermodynamic Modelling

2020 ◽  
Vol 61 (4) ◽  
Author(s):  
Paola Manzotti ◽  
Michel Ballèvre ◽  
Pavel Pitra ◽  
Benita Putlitz ◽  
Martin Robyr ◽  
...  

Abstract The sodic amphibole glaucophane is generally considered as indicative of blueschist-facies metamorphism. However, sodic amphiboles display a large range in chemical compositions, owing principally to the Fe2+Mg–1 and Fe3+Al–1 substitutions. Therefore, the whole-rock composition (namely its Na2O and FeO* content, and the Fe2+–Fe3+ ratio), strongly controls the stability field of the sodic amphiboles at the transition from greenschist- to blueschist-facies conditions. Neglecting these variables can lead to erroneous estimates of the metamorphic conditions and consequently the tectonic framework of the rocks. This paper explores the mechanisms that control the development of sodic amphibole and sodic pyroxene within the basement of the Dent Blanche Tectonic System (Western Alps), as a result of the Alpine metamorphic history. Field, petrographic and geochemical data indicate that sodic amphibole and sodic pyroxene form in different rock types: (1) in undeformed pods of ultramafic cumulates (hornblendite), sodic amphibole (magnesioriebeckite) forms coronas around magmatic pargasite; (2) metatonalite displays patches of radiating sodic (magnesioriebeckite) and calcic (actinolite) amphiboles; (3) sodic amphibole (magnesioriebeckite–glaucophane) occurs with high-Si potassic white mica (phengitic muscovite) in fine-grained (blue) schists; (4) in mylonitized granitoids (amphibole-gneiss) metasomatized along the contact with ultramafic cumulates, sodic amphibole (magnesioriebeckite–winchite) mainly forms rosettes or sheaves, generally without a shape-preferred orientation. Only locally are the needles aligned parallel to the stretching lineation. Pale green aegirine–augite is dispersed in an albite–quartz matrix or forms layers of fine-grained fibrous aggregates. The bulk-rock chemical composition of the different lithologies indicates that sodic amphibole and sodic pyroxene developed in Na- and Fe-rich systems or in a system with high Fe3+/Fe*. Thermodynamic modelling performed for different rock types (taking into account the measured Fe2O3 contents) reveals that sodic amphibole appears at ∼8 ± 1 kbar and 400–450 °C (i.e. at the transition between the greenschist- and blueschist-facies conditions) about 5 kbar lower than previous estimates. To test the robustness of our conclusion, we performed a review of sodic amphibole compositions from a variety of terranes and P–T conditions. This shows (1) systematic variations of composition with P–T conditions and bulk-rock chemistry, and (2) that the amphibole compositions reported from the studied area are consistent with those reported from other greenschist- to blueschist-facies transitions.

1997 ◽  
Vol 61 (409) ◽  
pp. 835-843 ◽  
Author(s):  
Aral I. Okay

AbstractBlueschist-facies rocks with jadeite-K-feldspar-lawsonite paragenesis occur as exotic blocks in Miocene debris flows in the blueschist belt of northwest Turkey. The jadeite-K-feldspar rocks have a very fine grain size and although recrystallized locally retain a relict porphyritic volcanic texture. The former nepheline microphenocrysts, recognized from their characteristic shapes, are pseudomorphed by jadeite and K-feldspar, while the relict magmatic aegirine has rims of jadeite. The matrix of the rock consists of very fine-grained aggregates of jadeite, K-feldspar and lawsonite. In some blocks, jadeite makes up >60% of the mode. Jadeite, K-feldspar and lawsonite in the blocks are essentially pure end-member in composition. P-T estimates for these rocks are 8 ± 2 kbar and 300 ± 50°C. The preserved volcanic texture, relict aegirine and the bulk rock composition indicate that these rocks represent metamorphosed phonolites. The paragenesis in these rocks shows that jadeite-K-feldspar is a stable mineral pair in blueschist-facies P-T conditions.


Solid Earth ◽  
2015 ◽  
Vol 6 (3) ◽  
pp. 881-901 ◽  
Author(s):  
L. Spruzeniece ◽  
S. Piazolo

Abstract. This study focuses on physiochemical processes occurring in a brittle–ductile shear zone at both fluid-present and fluid-limited conditions. In the studied shear zone (Wyangala, SE Australia), a coarse-grained two-feldspar–quartz–biotite granite is transformed into a medium-grained orthogneiss at the shear zone margins and a fine-grained quartz–muscovite phyllonite in the central parts. The orthogneiss displays cataclasis of feldspar and crystal-plastic deformation of quartz. Quartz accommodates most of the deformation and is extensively recrystallized, showing distinct crystallographic preferred orientation (CPO). Feldspar-to-muscovite, biotite-to-muscovite and albitization reactions occur locally at porphyroclasts' fracture surfaces and margins. However, the bulk rock composition shows very little change in respect to the wall rock composition. In contrast, in the shear zone centre quartz occurs as large, weakly deformed porphyroclasts in sizes similar to that in the wall rock, suggesting that it has undergone little deformation. Feldspars and biotite are almost completely reacted to muscovite, which is arranged in a fine-grained interconnected matrix. Muscovite-rich layers contain significant amounts of fine-grained intermixed quartz with random CPO. These domains are interpreted to have accommodated most of the strain. Bulk rock chemistry data show a significant increase in SiO2 and depletion in NaO content compared to the wall rock composition. We suggest that the high- and low-strain microstructures in the shear zone represent markedly different scenarios and cannot be interpreted as a simple sequential development with respect to strain. Instead, we propose that the microstructural and mineralogical changes in the shear zone centre arise from a local metasomatic alteration around a brittle precursor. When the weaker fine-grained microstructure is established, the further flow is controlled by transient porosity created at (i) grain boundaries in fine-grained areas deforming by grain boundary sliding (GBS) and (ii) transient dilatancy sites at porphyroclast–matrix boundaries. Here a growth of secondary quartz occurs from incoming fluid, resulting in significant changes in bulk composition and eventually rheological hardening due to the precipitation-related increase in the mode and grain size of quartz. In contrast, within the shear zone margins the amount of fluid influx and associated reactions is limited; here deformation mainly proceeds by dynamic recrystallization of the igneous quartz grains. The studied shear zone exemplifies the role of syn-deformational fluids and fluid-induced reactions on the dominance of deformation processes and subsequent contrasting rheological behaviour at micron to metre scale.


2015 ◽  
Vol 7 (2) ◽  
pp. 1399-1446
Author(s):  
L. Spruzeniece ◽  
S. Piazolo

Abstract. This study focuses on physiochemical processes occurring in a brittle-ductile shear zone at both fluid-present and fluid-limited conditions. In the studied shear zone (Wyangala, SE Australia), a coarse-grained two feldspar-quartz-biotite granite is transformed into a medium grained orthogneiss at the shear zone margins and a fine-grained quartz-muscovite phyllonite in the central parts. The orthogneiss displays cataclasis of feldspar and crystal-plastic deformation of quartz. Quartz accommodates most of the deformation and is extensively recrystallized showing distinct crystallographic preferred orientation (CPO). Feldspar-to-muscovite, biotite-to-muscovite and albitization reactions occur locally at porphyroclasts' fracture surfaces and margins. However, the bulk rock composition shows very little change in respect to the wall rock composition. In contrast, in the shear zone centre quartz occurs as large, weakly deformed porphyroclasts, in sizes similar to that in the wall rock, suggesting that it has undergone little deformation. Feldspars and biotite are almost completely reacted to muscovite, which is arranged in a fine-grained interconnected matrix. Muscovite-rich layers contain significant amounts of fine-grained intermixed quartz with random CPO. These domains are interpreted to have accommodated most of the strain. Bulk rock chemistry data shows a significant increase in SiO2 and depletion in NaO content compared to the wall rock composition. We suggest that the high and low strain fabrics represent markedly different scenarios and cannot be interpreted as a simple sequential development with respect to strain. We suggest that the fabrics and mineralogical changes in the shear zone centre have formed due to fluid influx probably along an initially brittle fracture. Here, hydration reactions dramatically changed the rheological properties of the rock. In the newly produced muscovite-quartz layers creep cavitation associated with grain boundary sliding and fluid pumping resulted in strain localization, further fluid influx and subsequent substantial changes in bulk chemistry. Strain partitioning between the "soft" muscovite-quartz layers and "hard" original igneous quartz grains allows preservation of the igneous quartz grains. In contrast, in the shear zone margins the amount of fluid and reactions was limited; here deformation was mainly accommodated by recrystallization of the igneous quartz grains. The studied shear zone exemplifies the role of syn-deformational fluids and fluid-induced reactions on the dominance of deformation processes and subsequent contrasting rheological behaviour at micron- to meter scale.


1987 ◽  
Vol 124 (1) ◽  
pp. 1-11 ◽  
Author(s):  
P. Thy

AbstractHole number CY-4 of the Cyprus Crustal Study Project penetrated the lower sheeted dyke complex, gabbros and ultramafic cumulates of the Troodos ophiolite. The lower part of the drill core sampled a coarse-grained plutonic complex revealing phase and cryptic layering and one major magma chamber replenishment. This magma chamber intruded medium-grained gabbroic rocks showing intricate chemical evolution trends reflecting several magma replenishments. In the upper part of the core, the gabbroic cumulates are intruded by fine-grained dykes, which grade into the sheeted dyke complex and chemically can be correlated with the lavas of the lower pillow sequence. The upper pillow lavas are best correlated with the ultramafic cumulates. A study of coexisting plagioclase (An) and mafic mineral (opx Mg #) compositions in the drill core revealed three main rock types: (1) a primitive group (An95–98, Mg #75–85) represented by the lower, coarse-grained gabbroic and ultramafic cumulates. (2) an intermediate group (An86–95 and Mg #70–78) represented by the upper level gabbroic cumulates, and (3) the lower part of the sheeted dyke complex (An60–80 and Mg #60–70). The plagioclase of the gabbros and ultramafic cumulates have an unusually high An content. Numerical simulation of the expected anhydrous, one atmosphere, crystallization trends show that the Troodos trends cannot be reproduced from known spreading or subduction related glasses. Mineralogical evidence indicates that the extrusives and the cumulate sequences of the Troodos ophiolite are genetically related. Glasses from the extrusives, nevertheless, also fail to reproduce the mineral crystallization trends observed in the plutonics. Attempts to model high PH2O crystallization produced trends more consistent with those observed in the cumulates. The very sodium-poor nature of the plagioclase may therefore mainly reflect high PH2O crystallization. High water content is consistent with the inferred subduction zone basin origin for the Troodos ophiolite.


Author(s):  
Gejing Li ◽  
D. R. Peacor ◽  
D. S. Coombs ◽  
Y. Kawachi

Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very finegrained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.Celadonite, having end-member composition KMgFe3+Si4O10(OH)2, and with minor substitution of Fe2+ for Mg and Al for Fe3+ on octahedral sites, is a fine-grained mica widespread in volcanic rocks and volcaniclastic sediments which have undergone low-temperature alteration in the oceanic crust and in burial metamorphic sequences.


1978 ◽  
Vol 15 (10) ◽  
pp. 1669-1672 ◽  
Author(s):  
B.N. Church

New localities of shackanite and related analcite-bearing lavas have been discovered in a broad field of early Tertiary phonolite and mafic phonolite in south-central British Columbia. The development of primary and secondary analcite in these rocks is probably the result of cooling lava during and shortly after extrusion.The possibility of leucite to analcite transformation in Daly's shackanite is unlikely because of lack of petrographic evidence and a preponderance of Na2O over K2O in bulk rock composition. It is also unlikely that analcite, and particularly groundmass analcite, crystallized at great depth and was transported to surface during eruption.


2001 ◽  
Vol 73 (1) ◽  
pp. 99-119 ◽  
Author(s):  
SILVIA R. MEDEIROS ◽  
CRISTINA M. WIEDEMANN-LEONARDOS ◽  
SIMON VRIEND

At the end of the geotectonic cycle that shaped the northern segment of the Ribeira Mobile Belt (Upper Proterozoic to Paleozoic age), a late to post-collisional set of plutonic complexes, consisting of a wide range of lithotypes, intruded all metamorphic units. The Várzea Alegre Intrusive Complex is a post-collisional complex. The younger intrusion consists of an inversely zoned multistage structure envolved by a large early emplaced ring of megaporphyritic charnoenderbitic rocks. The combination of field, petrographic and geochemical data reveals the presence of at least two different series of igneous rocks. The first originated from the partial melting of the mantle. This was previously enriched in incompatible elements, low and intermediate REE and some HFS-elements. A second enrichment in LREE and incompatible elements in this series was due to the mingling with a crustal granitic magma. This mingling process changed the composition of the original tholeiitic magma towards a medium-K calc-alkalic magma to produce a suite of basic to intermediate rock types. The granitic magma from the second high-K, calc-alkalic suite originated from the partial melting of the continental crust, but with strong influence of mantle-derived melts.


2017 ◽  
Vol 43 (5) ◽  
pp. 2667
Author(s):  
E. Mposkos ◽  
I. Baziotis

The carbonate-bearing metaperidotite from Sidironero Complex, north of the Xanthi town is composed primarily of olivine and orthopyroxene megacrysts and of Ti-clinohumite, tremolite, chlorite, dolomite, magnesite, talc, antigorite and spinel group minerals. The metaperidotite underwent a prograde HP metamorphism probably isofacial with the neighboring amphibolitized eclogites. Calculated P-T and P(T)-XCO2 phase diagram sections (pseudosections) for the bulk rock composition showed that XCO2 in the fluid phase was extremely low (≤0.008) at the first stages of the metamorphism and increased up to 0.022 at the peak P-T conditions ~1.5 GPa and 690 0C. The prograde metamorphism probably started from a hydrated and carbonated assemblage including talc+chlorite+magnesite+dolomite and proceeded with tremolite and antigorite formation before olivine growth, and orthopyroxene formation after olivine growth (Ol-1). Matrix dolomite, breakdown of chlorite (Chl-1) to Cr spinel+olivine and of Ti-clinohumite to olivine+Mg-ilmenite occurred during decompression. The P-T path is constrained by the absence of clinopyroxene in the metaperidotite.


Author(s):  
A. V. Maslov

Background. The lithogeochemical features of fine-grained detrital rocks (mudstones, shales, and fine-grained siltstones) allow, with a certain degree of success, the main parameters of the formation of sedimentary sequences to be reconstructed. These parameters include (primarily in terms of their REE and Th systematics) the types of river systems supplying thin terrigenous suspension in the sedimentation area: the rivers of the 1st category – large rivers with a catchment area of more than 100,000 km2; 2nd category – rivers feeding on the products of erosion of sedimentary deposits; 3rd category – rivers draining mainly igneous and metamorphic rocks; and 4th category – rivers carrying erosion products of volcanic associations.Aim. To reveal, based on the analysis of interrelationships between such parameters as (La/Yb)N, Eu/Eu* and the Th content, the types of river systems that fed the Jurassic and Lower Cretaceous deposits of the Shaim oil and gas region (OGR) (Sherkalinsky, Tyumen, Abalak and Mulymya formations) and the region of the North Pokachevsky field of the Shirotnoe Priobye region (Sherkalinsky, Tyumen and Bazhenov formations, Lower Cretaceous deposits).Materials and methods. The ICP MS data for almost 100 samples of mudstones and fine-grained clayey siltstones were used to analyse the features of distribution of lanthanides and Th in the Jurassic and Lower Cretaceous clayey rocks of the Shaim OGR and the area of the North Pokachevsky deposits. Individual and average composition points for formations, members and layers were plotted on the (La/Yb)N-Eu/Eu*, (La/Yb)N–Th diagrams developed by us with classification areas of the composition of fine suspended material of modern rivers of different categories.Results and conclusion. The results presented in the article showed that during the formation of the deposits of the Shaim OGR in the Early and Middle Jurassic, erosion affected either mainly sedimentary formations or paleo-catchment areas that were very variegated in their rock composition. In the Late Jurassic, the source area was, most likely, a volcanic province, composed mainly of igneous rocks of the basic composition, and located within the Urals. This conclusion suggested that the transfer of clastic material from the Urals to the Urals part of the West Siberian basin “revived” much earlier than the Hauterivian. The Jurassic-Lower Cretaceous section of the vicinity of the North Pokachevsky field was almost entirely composed of thin aluminosilicaclastics formed due to the erosion of volcanic formations. These volcanic formations were located, as followed from the materials of earlier performed paleogeographic reconstructions, probably within the Altai-Sayan region or Northern Kazakhstan. Thus, the supply of detrital material in the considered territories of the West Siberian basin had a number of significant differences in the Jurassic and early Cretaceous.


2007 ◽  
Vol 13 ◽  
pp. 45-48 ◽  
Author(s):  
Mark T. Hutchison ◽  
Louise Josefine Nielsen ◽  
Stefan Bernstein

Exploration for diamonds in West Greenland has experienced a major boost within the last decade following the establishment of world-class diamond mines within the nearby Slave Province of the Canadian Arctic. Numerous companies have active programmes of diamond exploration and increasingly larger diamonds have been discovered, notably a 2.392 carat dodecahedral stone recovered by the Canadian exploration company Hudson Resources Inc. in January 2007. The Geological Survey of Denmark and Greenland (GEUS) is currently carrying out several studies aimed at understanding the petrogenesis of diamondiferous kimberlites in Greenland and the physical and chemical properties of their associated mantle source regions (e.g. Hutchison 2005; Nielsen & Jensen 2005). Constraint of the mantle geotherm, i.e. the variation of temperature with depth for a particular mantle volume, is an important initial step in assessing the likelihood of such a volume to grow diamonds and hence the diamond potential of associated deep-sourced magmatic rocks occurring at surface. Cool geotherms are often present within old cratonic blocks such as West Greenland (Garde et al. 2000) and provide a good environment for the formation of diamonds (Haggerty 1986). This study aims to constrain the mantle geotherm for the southern extent of the North Atlantic Craton in Greenland by applying three-phase geothermobarometry calculations using chemical compositions of clinopyroxene, orthopyroxene and garnet from four-phase kimberlite-hosted lherzolite xenoliths. Xenoliths have been sampled from kimberlites from two areas in South-West Greenland: Midternæs and Pyramide- fjeld (Fig. 1). Kimberlites in the Pyramidefjeld area principally occur as sheeted sills hosted in the Pyramidefjeld granite complex of Palaeoproterozoic Ketilidian age. In contrast, Midternæs kimberlites occur as outcrops within a single, extensive and undulating sill hosted within pre-Ketilidian granodioritic gneiss and Ketilidian supracrustal rocks. Pyramidefjeld kimberlites have been shown to be Mesozoic (Andrews & Emeleus 1971), and work is currently being carried out to further constrain the ages of these and the Midternæs kimberlites and also xenoliths using modern methods. No attempt is made herein to provide a correct petrological classification of the rocks hosting the xenoliths; however, the abundance of clinopyroxene reported by Andrews & Emeleus (1971) suggests that further work may more correctly conclude a classification as ‘orangeite’ after Mitchell (1995). Notwithstanding this, the term ‘kimberlite’ is employed throughout in order to be consistent with that adopted by previous authors. The Precambrian Pyramide fjeld granite complex and adjacent Archaean granod ioritic gneisses are host to several kimberlite sheets located at various levels between 400 and 900 m elevation (Fig. 1A; Andrews & Emeleus 1971, 1975). Kimberlites are mainly found as loose blocks in scree; however, these are almost always sourced locally from in situ bodies. Sheets can often be found deep within overhanging clefts, particularly in granitic walls. The kimberlite bodies are gently dipping, typically 20 degrees, and with a range of strikes. The maximum thickness of sills is approximately 2 m but thickness varies significantly over short distances. In many instances, the occurrence of kimberlite is seen to be controlled locally by structures in the country rocks. Field observations of the range of orientations of intrusive bodies do not appear to suggest a particular focal point which could be a likely location for an intrusive centre such as a pipe. This observation is in line with what is seen throughout West Greenland where kimberlite emplacement appears as dykes and sills (Larsen & Rex 1992) rather than the pipes and blows which are common in other world-wide settings. The occurrence of xenoliths amongst Pyramidefjeld kimberlites is highly variable with the most xenolith-rich localities being in the vicinity of Safirsø (Fig. 1A). The majority of xenoliths are dunites with occasional wehrlites and lherzolites (Emeleus & Andrews 1975). Of particular interest from the point of view of thermobarometry is the occurrence of garnet. This is rarely found, even in clinopyroxene-bearing samples, and the two samples chosen for thermobarometry (Fig. 1A) represent the majority of the garnet-bearing xenoliths identified within an estimated total population of 75 xenoliths collected. The Midternæs kimberlites are hosted in Archaean gneisses and Proterozoic supracrustal rocks (Fig. 1B; Andrews & Emeleus 1971, 1975). The style of kimberlite emplacement and occurrence of garnet-bearing xenoliths are closely similar to those of Pyramidefjeld. Contours of elevation between outcrops suggest that the kimberlites form parts of a largely contiguous single body dipping at approximately 30 degrees to the west-south-west. Individual outcrops as in Pyramidefjeld indicate that the body varies in thickness and undulates in response to local structure. The south-western portion of the body which outcrops near the glacier Sioralik Bræ, is considerably thicker than elsewhere (Fig. 2) and in some places is seen to have a true thickness in excess of 4 m. Xenoliths are less abundant on average than in Pyramidefjeld kimberlites, but a similar variety and proportion of rock types and infrequent occurrence of garnet is observed. The kimberlites from both areas were intruded along zones of platy jointing which likely were caused by degassing of the magma and formed just prior to the kimberlite intrusion. In contrast to some kimberlites in other cratons, very few xenoliths of local, lower crustal rock types have been recognised in the kimberlites from Pyramidefjeld and Mid ternæs. The intrusions are therefore believed to have been of a non-explosive nature, perhaps because of host-rock rheol - ogy or due to emplacement at relatively deep crustal levels. Here we report on calculations of equilibrium pressure and temperature using compositions of three-phase assemblages of garnet, orthopyroxene and clinopyroxene from Midternæs and Pyramidefjeld mantle xenoliths.


Sign in / Sign up

Export Citation Format

Share Document