chua’s oscillator
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 8)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Léandre Kamdjeu Kengne ◽  
Karthikeyan Rajagopal ◽  
Nestor Tsafack ◽  
Paul Didier Kamdem Kuate ◽  
Balamurali Ramakrishnan ◽  
...  

This paper addresses the effects of offset terms on the dynamics of a modified Chua’s oscillator. The mathematical model is derived using Kirchhoff’s laws. The model is analyzed with the help of the maximal Lyapunov exponent, bifurcation diagrams, phase portraits, and basins of attraction. The investigations show that the offset terms break the symmetry of the system, generating more complex nonlinear phenomena like coexisting asymmetric bifurcations, coexisting asymmetric attractors, asymmetric double-scroll chaotic attractors and asymmetric attraction basins. Also, a hidden attractor (period-1 limit cycle) is found when varying the initial conditions. More interestingly, this latter attractor coexists with all other self-excited ones. A microcontroller-based implementation of the circuit is carried out to verify the numerical investigations.


2020 ◽  
Vol 6 ◽  
pp. 14
Author(s):  
John Abidemi Laoye ◽  
Taiwo Olakunle Roy-Layinde ◽  
Kehinde Adam Omoteso ◽  
Rasaki Kola Odunaike

In this paper, we numerically investigated the occurrence of Vibrational Resonance in a modified Chua's oscillator with a smooth nonlinearity, described by a cubic polynomial. Response curves generated from the numerical simulation at the low frequency reveal that the system's response amplitude could be controlled by modulating the conductance parameter of the Chua's circuit, rather modulating the parameters of the fast-periodic force. Modulating the frequency of the fast-periodic force slightly reduces the response amplitude; shifts the peak point to a higher value of the amplitude of the fast-periodic force by widening the resonance curves. Within certain parameter regime of the high frequency (Ω >100ω), the system's response gets saturated, and further increase does not affect its amplitude.


2020 ◽  
Vol 30 (08) ◽  
pp. 2050125
Author(s):  
Tom Birkoben ◽  
Moritz Drangmeister ◽  
Finn Zahari ◽  
Serhiy Yanchuk ◽  
Philipp Hövel ◽  
...  

We investigate the effect of a memristive element on the dynamics of a chaotic system. For this purpose, the chaotic Chua’s oscillator is extended by a memory element in the form of a double-barrier memristive device. The device consists of [Formula: see text]/Al2O3/Al/Nb layers and exhibits strong analog-type resistive changes depending on the history of the charge flow. In the obtained system we observe strong changes in the dynamics of chaotic oscillations. The otherwise fluctuating amplitudes of Chua’s system are disrupted by transient silent states. Numerical simulations and analysis of the extended model reveal that the underlying dynamics possesses slow–fast properties due to different timescales between the memory element and the base system. Furthermore, the stabilizing and destabilizing dynamic bifurcations are identified that are traversed by the system during its chaotic behavior.


2019 ◽  
Vol 75 (1) ◽  
pp. 11-21 ◽  
Author(s):  
T. Fonzin Fozin ◽  
G. D. Leutcho ◽  
A. Tchagna Kouanou ◽  
G. B. Tanekou ◽  
R. Kengne ◽  
...  

AbstractMultistability analysis has received intensive attention in recently, however, its control in systems with more than two coexisting attractors are still to be discovered. This paper reports numerically the multistability control of five disconnected attractors in a self-excited simplified hyperchaotic canonical Chua’s oscillator (hereafter referred to as SHCCO) using a linear augmentation scheme. Such a method is appropriate in the case where system parameters are inaccessible. The five distinct attractors are uncovered through the combination of hysteresis and parallel bifurcation techniques. The effectiveness of the applied control scheme is revealed through the nonlinear dynamical tools including bifurcation diagrams, Lyapunov’s exponent spectrum, phase portraits and a cross section basin of attractions. The results of such numerical investigations revealed that the asymmetric pair of chaotic and periodic attractors which were coexisting with the symmetric periodic one in the SHCCO are progressively annihilated as the coupling parameter is increasing. Monostability is achieved in the system through three main crises. First, the two asymmetric periodic attractors are annihilated through an interior crisis after which only three attractors survive in the system. Then, comes a boundary crisis which leads to the disappearance of the symmetric attractor in the system. Finally, through a symmetry restoring crisis, a unique symmetric attractor is obtained for higher values of the control parameter and the system is now monostable.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Xingkai Hu ◽  
Linru Nie

AbstractConsidering technology limitation or device restriction in practical application, we formulate new nonlinear systems with bounded gain error, which contain switched control and impulsive control. We then investigate the exponential stability of the considered systems. Finally, the effectiveness of the proposed criteria is confirmed via an example based on Chua’s oscillator.


2019 ◽  
Vol 29 (11) ◽  
pp. 113105 ◽  
Author(s):  
T. Fonzin Fozin ◽  
P. Megavarna Ezhilarasu ◽  
Z. Njitacke Tabekoueng ◽  
G. D. Leutcho ◽  
J. Kengne ◽  
...  

Author(s):  
Kammogne Soup Tewa Alain ◽  
Kengne Romanic ◽  
Ahmad Taher Azar ◽  
Sundarapandian Vaidyanathan ◽  
Fotsin Hilaire Bertrand ◽  
...  

In this chapter, the dynamics of a particular topology of Colpitts oscillator with fractional order dynamics is presented. The first part is devoted to the dynamics of the model using standard nonlinear analysis techniques including time series, bifurcation diagrams, phase space trajectories plots, and Lyapunov exponents. One of the major results of this innovative work is the numerical finding of a parameter region in which the fractional order Colpitts oscillator's circuit experiences multiple attractors' behavior. This phenomenon was not reported previously in the Colpitts circuit (despite the huge amount of related research works) and thus represents an enriching contribution to the understanding of the dynamics of Chua's oscillator. The second part of this chapter deals with the synchronization of fractional order system. Based on fractional-order Lyapunov stability theory, this chapter provides a novel method to achieve generalized and phase synchronization of two and network fractional-order chaotic Colpitts oscillators, respectively.


Sign in / Sign up

Export Citation Format

Share Document