structured soils
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 26)

H-INDEX

27
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
pp. 440
Author(s):  
Zhanghui Zhai ◽  
Yaguo Zhang ◽  
Shuxiong Xiao ◽  
Tonglu Li

Soil structure has significant influences on the mechanical behaviors of natural soils, although it is rarely considered in previous cavity expansion analyses. This paper presents an undrained elastoplastic solution for cylindrical cavity expansion in structured soils, considering the destructuration effects. Firstly, a structural ratio was defined to denote the degree of the initial structure, and the Structured Cam Clay (SCC) model was employed to describe the subsequent stress-induced destructuration, including the structure degradation and crushing. Secondly, combined with the large strain theory, the considered problem was formulated as a system of first-order differential equations, which can be solved in a simplified procedure with the introduced auxiliary variable. Finally, the significance and efficiency of the present solution was demonstrated by comparing with the previous solutions, and parametric studies were also conducted to investigate the effects of soil structure and destructuration on the cavity expansion process. The results show that the soil structure has pronounced effects on the mechanical behavior of structured soils around the cavity. For structured soils, a cavity pressure that is larger than the corresponding reconstituted soils when the cavity expands to the same radius is required, and the effective stresses first increase to a peak value before decreasing rapidly with soil structure degradation and crushing. The same final critical state is reached for soils with different degrees of the initial structure, which indicates that the soil structure is completely destroyed during the cavity expansion. With the increase of the destructuring index, the soil structure was destroyed more rapidly, and the stress release during the plastic deformation became more significant. Moreover, the present solution was applied in the jacking of a casing during the sand compact pile installation and in situ self-boring pressuremeter (SBPM) tests, which indicates that the present solution provides an effective theoretical tool for predicting the behavior of natural structured soils around the cavity.


2022 ◽  
Vol 141 ◽  
pp. 104499
Author(s):  
Chi On Alex Leung ◽  
Charles Wang Wai Ng ◽  
Nallathamby Sivasithamparam

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wugang Li ◽  
Wenhua Liu ◽  
Zhijia Xue ◽  
Xiuli Sun

Due to the influence of soil structure, structured soils exhibit significantly different mechanical behavior compared to the reconstituted soils having the same material. In this work, a theoretical analysis focusing on the mechanical behavior of structured soils is presented. Based on the mechanical behavior of the structured soil, a newly defined variable structural index was used as a measurement of the integrity of soil structure based on the concept of intrinsic compression line of intact structured soils. Furthermore, a novel correlation for the variation in volume of structured soils is established using effective stress and newly defined structural index as the constitutive variables. The novel correlation provided interpretation about the mechanism of compression behavior of the structured soils. Afterwards, the proposed correlation for the variation in volume was extended to triaxial stress state in the framework of subloading surface to include the effect of overconsolidation. Comparisons between the predictions and experimental results validated the proposed constitutive model for structured soils.


2021 ◽  
Author(s):  
G. M. Rotisciani ◽  
A. Desideri ◽  
A. Amorosi

AbstractThe paper presents a new single-surface elasto-plastic model for unsaturated cemented soils, formulated within the critical state soil mechanics framework, which should be considered as an extension to unsaturated conditions of a recently proposed constitutive law for saturated structured soils. The model has been developed with the main purpose of inspecting the mechanical instabilities induced in natural soils by bond degradation resulting from the accumulation of plastic strains and/or the changes in pore saturation. At this scope, the constitutive equations are used to simulate typical geotechnical testing conditions, whose results are then analysed in light of the controllability theory. The results of triaxial tests on an ideal fully saturated cemented soil and on the corresponding unsaturated uncemented one are first discussed, aiming at detecting the evidence of potentially unstable conditions throughout the numerical simulations. This is followed by similar analyses considering the combined effects of both the above features. For each analysed case, a simple analytical stability criterion is proposed and validated against the numerical results, generalizing the results, and highlighting the crucial role of state variables and model parameters on the possible occurrence of failure conditions.


2021 ◽  
Author(s):  
Jinhyun Choo

<p>Many natural and engineered geomaterials have double-porosity structure where two dominant pore systems coexist. Examples include structured soils where the two pore systems are inter-aggregate pores and intra-aggregate pores, and fissured rocks where the two pore systems are fissures and matrix pores. Although such double-porosity materials are frequently observed in geosciences and geoengineering applications, it remains mostly unclear how fluid flow and solid deformation interact differently in single- and double-porosity materials. The presentation explores this question through numerical simulation of consolidation – a paradigmatic problem in poromechanics – based on a recently developed modelling framework for fluid-infiltrated, inelastic materials with double porosity. Built on a combination of continuum principles of thermodynamics and standard plasticity theory, the framework can capture deformation, flow, and their coupling that occur individually in each pore system. Simulation results using this framework suggest that double-porosity structure gives rise to a two-staged consolidation behaviour, where the second stage appears similar to secondary compression in clays. It is also found that the simulated two-staged behaviour bears a striking semblance to experimentally observed consolidation processes in shales. These findings suggest that double-porosity structure may exert dominant control over the long-term hydro-mechanical behaviour of geomaterials.</p>


Sign in / Sign up

Export Citation Format

Share Document