scholarly journals Unsaturated structured soils: constitutive modelling and stability analyses

2021 ◽  
Author(s):  
G. M. Rotisciani ◽  
A. Desideri ◽  
A. Amorosi

AbstractThe paper presents a new single-surface elasto-plastic model for unsaturated cemented soils, formulated within the critical state soil mechanics framework, which should be considered as an extension to unsaturated conditions of a recently proposed constitutive law for saturated structured soils. The model has been developed with the main purpose of inspecting the mechanical instabilities induced in natural soils by bond degradation resulting from the accumulation of plastic strains and/or the changes in pore saturation. At this scope, the constitutive equations are used to simulate typical geotechnical testing conditions, whose results are then analysed in light of the controllability theory. The results of triaxial tests on an ideal fully saturated cemented soil and on the corresponding unsaturated uncemented one are first discussed, aiming at detecting the evidence of potentially unstable conditions throughout the numerical simulations. This is followed by similar analyses considering the combined effects of both the above features. For each analysed case, a simple analytical stability criterion is proposed and validated against the numerical results, generalizing the results, and highlighting the crucial role of state variables and model parameters on the possible occurrence of failure conditions.

2021 ◽  
Vol 11 (11) ◽  
pp. 4859
Author(s):  
Xiao Xu ◽  
Guoqing Cai ◽  
Zhaoyang Song ◽  
Jian Li ◽  
Chongbang Xu ◽  
...  

Most soil mechanics theories are limited to strain hardening and shrinkage under high compressive stresses, and there are some shortcomings in the selection of suction or degree of saturation as the water content state varies in the constitutive models of unsaturated soil. Based on the triaxial shear tests of unsaturated compacted soil (a silt of high plasticity) with different water content and confining pressure (low-confining), a shear dilatancy model of unsaturated soil based on the mass water content is proposed in this paper. The influence of the water content on the shear deformation characteristics of the unsaturated soil is analysed. The stress–dilatancy relationship and the prediction equation of the minimum dilatancy rate of the unsaturated soil under different water content and different confining pressure are provided. Selecting the mass water content as the state variable, a constitutive model suitable for the dilatancy of unsaturated soil is established. The method of determining model parameters based on the mass water content is analysed. The applicability of the model is verified by comparisons between the predicted and experimental results.


2019 ◽  
Vol 56 (10) ◽  
pp. 1461-1474
Author(s):  
Enrique Romero ◽  
Marcelo Sánchez ◽  
Xuerui Gai ◽  
Mauricio Barrera ◽  
Antonio Lloret

This paper reports an experimental study and subsequent constitutive modelling focused on the stress-strain and volumetric responses during deviatoric stress application of a partially saturated clayey silt. The material was statically and isotropically compacted at constant water content towards a pre-defined pre-consolidation stress. A series of strain-controlled triaxial compression tests on a state of the art device and isotropic experiments are presented and discussed. The triaxial tests started at the same stress state (i.e., identical matric suction and mean net stress) and were conducted at the same constant suction. Several stress paths under isotropic conditions (i.e., drying–wetting, loading–unloading, and wetting–drying) were followed to induce different overconsolidated states before shearing the specimens. The test results are initially interpreted using the elastoplastic Barcelona Basic Model (BBM). Independent tests were selected to determine the model parameters associated with the volumetric behavior of the soil. The BBM was not able to capture the dilatant behavior observed during shearing. An enhancement of the BBM is proposed in this work, which includes both, a more general hardening law and sub-loading concepts. The main capabilities and limitations of the original BBM and the enhanced model are discussed and compared. The modified BBM was able to handle the dilatancy observed in the experiments and provided a more realistic description of the experimental stress-strain response.


2020 ◽  
Vol 14 (2) ◽  
pp. 69-78
Author(s):  
Władysław Egner ◽  
Piotr Sulich ◽  
Stanisław Mroziński ◽  
Halina Egner

AbstractIn this paper, the experimental investigations, constitutive description and numerical modelling of low-cycle fatigue behaviour of P91 steel in non-isothermal conditions are presented. First, experimental tests are performed to recognise different aspects of material behaviour. Then, an appropriate constitutive model is developed within the framework of thermodynamics of irreversible processes with internal state variables. The model describes two phases of cyclic softening, related to plastic mechanisms. An important goal of the presented research is to include thermomechanical coupling in the constitutive modelling. Next, the model parameters are identified based on the available experimental data. Some parametric studies are presented. Finally, numerical simulations are performed, which indicate the significant influence of thermomechanical coupling on the response of the constitutive model in thermomechanical fatigue conditions.


Author(s):  
Marcello Pericoli ◽  
Marco Taboga

Abstract We propose a general method for the Bayesian estimation of a very broad class of non-linear no-arbitrage term-structure models. The main innovation we introduce is a computationally efficient method, based on deep learning techniques, for approximating no-arbitrage model-implied bond yields to any desired degree of accuracy. Once the pricing function is approximated, the posterior distribution of model parameters and unobservable state variables can be estimated by standard Markov Chain Monte Carlo methods. As an illustrative example, we apply the proposed techniques to the estimation of a shadow-rate model with a time-varying lower bound and unspanned macroeconomic factors.


2017 ◽  
Vol 65 (4) ◽  
pp. 479-488 ◽  
Author(s):  
A. Boboń ◽  
A. Nocoń ◽  
S. Paszek ◽  
P. Pruski

AbstractThe paper presents a method for determining electromagnetic parameters of different synchronous generator models based on dynamic waveforms measured at power rejection. Such a test can be performed safely under normal operating conditions of a generator working in a power plant. A generator model was investigated, expressed by reactances and time constants of steady, transient, and subtransient state in the d and q axes, as well as the circuit models (type (3,3) and (2,2)) expressed by resistances and inductances of stator, excitation, and equivalent rotor damping circuits windings. All these models approximately take into account the influence of magnetic core saturation. The least squares method was used for parameter estimation. There was minimized the objective function defined as the mean square error between the measured waveforms and the waveforms calculated based on the mathematical models. A method of determining the initial values of those state variables which also depend on the searched parameters is presented. To minimize the objective function, a gradient optimization algorithm finding local minima for a selected starting point was used. To get closer to the global minimum, calculations were repeated many times, taking into account the inequality constraints for the searched parameters. The paper presents the parameter estimation results and a comparison of the waveforms measured and calculated based on the final parameters for 200 MW and 50 MW turbogenerators.


2020 ◽  
pp. 1-11
Author(s):  
Hui Wang ◽  
Huang Shiwang

The various parts of the traditional financial supervision and management system can no longer meet the current needs, and further improvement is urgently needed. In this paper, the low-frequency data is regarded as the missing of the high-frequency data, and the mixed frequency VAR model is adopted. In order to overcome the problems caused by too many parameters of the VAR model, this paper adopts the Bayesian estimation method based on the Minnesota prior to obtain the posterior distribution of each parameter of the VAR model. Moreover, this paper uses methods based on Kalman filtering and Kalman smoothing to obtain the posterior distribution of latent state variables. Then, according to the posterior distribution of the VAR model parameters and the posterior distribution of the latent state variables, this paper uses the Gibbs sampling method to obtain the mixed Bayes vector autoregressive model and the estimation of the state variables. Finally, this article studies the influence of Internet finance on monetary policy with examples. The research results show that the method proposed in this article has a certain effect.


2017 ◽  
Vol 54 (10) ◽  
pp. 1460-1471 ◽  
Author(s):  
Katherine A. Kwa ◽  
David W. Airey

This study uses a critical state soil mechanics perspective to understand the mechanics behind the liquefaction of metallic ores during transport by ship. These metallic ores are transported at relatively low densities and have variable gradings containing a wide range of particle sizes and fines contents. The effect of the fines content on the location of the critical state line (CSL) and the cyclic liquefaction behaviour of well-graded materials was investigated by performing saturated, standard drained and undrained monotonic and compression-only cyclic triaxial tests. Samples were prepared at four different gradings containing particle sizes from 9.5 mm to 2 μm with fines (<75 μm) contents of 18%, 28%, 40%, and 60%. In the e versus log[Formula: see text] plane, where e is void ratio and [Formula: see text] is mean effective stress, the CSLs shifted upwards approximately parallel to one another as the fines content was increased. Transitional soil behaviour was observed in samples containing 28%, 40%, and 60% fines. A sample’s cyclic resistance to liquefaction depended on a combination of its density and state parameter, which were both related to the fines content. Samples with the same densities were more resistant to cyclic failure if they contained higher fines contents. The state parameter provided a useful prediction for general behavioural trends of all fines contents studied.


2021 ◽  
Vol 22 (8) ◽  
pp. 404-410
Author(s):  
K. B. Dang ◽  
A. A. Pyrkin ◽  
A. A. Bobtsov ◽  
A. A. Vedyakov ◽  
S. I. Nizovtsev

The article deals with the problem of state observer design for a linear time-varying plant. To solve this problem, a number of realistic assumptions are considered, assuming that the model parameters are polynomial functions of time with unknown coefficients. The problem of observer design is solved in the class of identification approaches, which provide transformation of the original mathematical model of the plant to a static linear regression equation, in which, instead of unknown constant parameters, there are state variables of generators that model non-stationary parameters. To recover the unknown functions of the regression model, we use the recently well-established method of dynamic regressor extension and mixing (DREM), which allows to obtain monotone estimates, as well as to accelerate the convergence of estimates to the true values. Despite the fact that the article deals with the problem of state observer design, it is worth noting the possibility of using the proposed approach to solve an independent and actual estimation problem of unknown time-varying parameters.


2016 ◽  
Vol 837 ◽  
pp. 68-74
Author(s):  
Rafal Uliniarz

The paper presents a reasonably advanced constitutive law for soil – a hybrid of the Modified Cam Clay and a new RU development. The Modified Cam Clay model is an isotropic hardening elasto – plastic model originated by Burland in 1967 [1] within the critical state soil mechanics. This model describes realistically mechanical soil behaviour in normal consolidation states. The other one is designed to ensure more adequate soil responses to reloading paths, particularly in the range of small strains. The RU+MCC model has been implemented in the FEM computer code Z_SOIL.pc. To test the influence of the small strain nonlinearity on soil – structure interaction as well as to exhibit the ability of the proposed model to simulate realistically this effect, a comparative study based on the FEM solution has been carried out. As a benchmark a trial loading test of strip footing was used.


2014 ◽  
Vol 8 (3) ◽  
pp. 136-140 ◽  
Author(s):  
Maciej Ryś

Abstract In this work, a macroscopic material model for simulation two distinct dissipative phenomena taking place in FCC metals and alloys at low temperatures: plasticity and phase transformation, is presented. Plastic yielding is the main phenomenon occurring when the yield stress is reached, resulting in nonlinear response of the material during loading. The phase transformation process leads to creation of two-phase continuum, where the parent phase coexists with the inclusions of secondary phase. An identification of the model parameters, based on uniaxial tension test at very low temperature, is also proposed.


Sign in / Sign up

Export Citation Format

Share Document