head direction cell
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 6)

H-INDEX

22
(FIVE YEARS 2)

Cell Reports ◽  
2020 ◽  
Vol 31 (10) ◽  
pp. 107747 ◽  
Author(s):  
Gil Vantomme ◽  
Zita Rovó ◽  
Romain Cardis ◽  
Elidie Béard ◽  
Georgia Katsioudi ◽  
...  

2019 ◽  
Vol 133 (6) ◽  
pp. 602-613 ◽  
Author(s):  
Anna E. Smith ◽  
Olivia A. Cheek ◽  
Emily L. C. Sweet ◽  
Paul A. Dudchenko ◽  
Emma R. Wood

2019 ◽  
Author(s):  
Gil Vantomme ◽  
Zita Rovó ◽  
Romain Cardis ◽  
Elidie Béard ◽  
Georgia Katsioudi ◽  
...  

2017 ◽  
Author(s):  
Jean Laurens ◽  
Dora E. Angelaki

ABSTRACTHead Direction cells form an internal compass that signals head azimuth orientation even in the absence of visual landmarks. It is well accepted that head direction properties are generated through a ring attractor that is updated using rotation self-motion cues. The properties and origin of this self-motion velocity drive remain, however, unknown. We propose a unified, quantitative framework whereby the attractor velocity input represents a multisensory self-motion estimate computed through an internal model that uses sensory prediction error based on vestibular, visual, and somatosensory cues to improve on-line motor drive. We show how context-dependent strength of recurrent connections within the attractor itself, rather than the self-motion input, explain differences in head direction cell firing between free foraging and restrained movements. We also summarize recent findings on how head tilt relative to gravity influences the azimuth coding of head direction cells, and explain why and how these effects reflect an updating self-motion velocity drive that is not purely egocentric. Finally, we highlight recent findings that the internal compass may be three-dimensional and hypothesize that the additional vertical degrees of freedom are defined based on global allocentric gravity cues.


Sign in / Sign up

Export Citation Format

Share Document