molecular radiotherapy
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 33)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Deni Hardiansyah ◽  
Ade Riana ◽  
Peter Kletting ◽  
Nouran R. R. Zaid ◽  
Matthias Eiber ◽  
...  

Abstract Background The calculation of time-integrated activities (TIAs) for tumours and organs is required for dosimetry in molecular radiotherapy. The accuracy of the calculated TIAs is highly dependent on the chosen fit function. Selection of an adequate function is therefore of high importance. However, model (i.e. function) selection works more accurately when more biokinetic data are available than are usually obtained in a single patient. In this retrospective analysis, we therefore developed a method for population-based model selection that can be used for the determination of individual time-integrated activities (TIAs). The method is demonstrated at an example of [177Lu]Lu-PSMA-I&T kidneys biokinetics. It is based on population fitting and is specifically advantageous for cases with a low number of available biokinetic data per patient. Methods Renal biokinetics of [177Lu]Lu-PSMA-I&T from thirteen patients with metastatic castration-resistant prostate cancer acquired by planar imaging were used. Twenty exponential functions were derived from various parameterizations of mono- and bi-exponential functions. The parameters of the functions were fitted (with different combinations of shared and individual parameters) to the biokinetic data of all patients. The goodness of fits were assumed as acceptable based on visual inspection of the fitted curves and coefficients of variation CVs < 50%. The Akaike weight (based on the corrected Akaike Information Criterion) was used to select the fit function most supported by the data from the set of functions with acceptable goodness of fit. Results The function $$A_{1} { }\beta { }e^{{ - \left( {\lambda_{1} + \lambda_{{{\text{phys}}}} } \right)t}} + A_{1} { }\left( {1 - \beta } \right){ }e^{{ - \left( {\lambda_{{{\text{phys}}}} } \right)t}}$$ A 1 β e - λ 1 + λ phys t + A 1 1 - β e - λ phys t with shared parameter $$\beta$$ β was selected as the function most supported by the data with an Akaike weight of 97%. Parameters $$A_{1}$$ A 1 and $$\lambda_{1}$$ λ 1 were fitted individually for every patient while parameter $$\beta { }$$ β was fitted as a shared parameter in the population yielding a value of 0.9632 ± 0.0037. Conclusions The presented population-based model selection allows for a higher number of parameters of investigated fit functions which leads to better fits. It also reduces the uncertainty of the obtained Akaike weights and the selected best fit function based on them. The use of the population-determined shared parameter for future patients allows the fitting of more appropriate functions also for patients for whom only a low number of individual data are available.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1497
Author(s):  
Sara Neira ◽  
Araceli Gago-Arias ◽  
Isabel Gónzalez-Crespo ◽  
Jacobo Guiu-Souto ◽  
Juan Pardo-Montero

Pharmacokinetic modeling of the radiopharmaceuticals used in molecular radiotherapy is an important step towards accurate radiation dosimetry of such therapies. In this paper, we present a pharmacokinetic model for CLR1404, a phospholipid ether analog that, labeled with 124I/131I, has emerged as a promising theranostic agent. We follow a systematic approach for the model construction based on a decoupling process applied to previously published experimental data, and using the goodness-of-fit, Sobol’s sensitivity analysis, and the Akaike Information Criterion to construct the optimal form of the model, investigate potential simplifications, and study factor prioritization. This methodology was applied to previously published experimental human time-activity curves for 9 organs. The resulting model consists of 17 compartments involved in the CLR1404 metabolism. Activity dynamics in most tissues are well described by a blood contribution plus a two-compartment system, describing fast and slow uptakes. The model can fit both clinical and pre-clinical kinetic data of 124I/131I. In addition, we have investigated how simple fits (exponential and biexponential) differ from the complete model. Such fits, despite providing a less accurate description of time-activity curves, may be a viable alternative when limited data is available in a practical case.


2021 ◽  
pp. 20210547
Author(s):  
Jonathan Gear ◽  
Daniel McGowan ◽  
Bruno Rojas ◽  
Allison J Craig ◽  
April-Louise Smith ◽  
...  

The Internal Dosimetry User Group (IDUG) is an independent, non-profit group of medical professionals dedicated to the promotion of dosimetry in molecular radiotherapy ( www.IDUG.org.uk ). The Ionising Radiation (Medical Exposure) Regulations 2017, IR(ME)R, stipulate a requirement for optimisation and verification of molecular radiotherapy treatments, ensuring doses to non-target organs are as low as reasonably practicable. For many molecular radiotherapy treatments currently undertaken within the UK, this requirement is not being fully met. The growth of this field is such that we risk digressing further from IR(ME)R compliance potentially delivering suboptimal therapies that are not in the best interest of our patients. For this purpose, IDUG proposes ten points of action to aid in the successful implementation of this legislation. We urge stakeholders to support these proposals and ensure national provision is sufficient to meet the criteria necessary for compliance, and for the future advancement of molecular radiotherapy within the UK.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Glenn Flux ◽  
John Buscombe

Author(s):  
Magdalena STANISZEWSKA ◽  
Janette IKING ◽  
Katharina LÜCKERATH ◽  
Boris HADASCHIK ◽  
Ken HERRMANN ◽  
...  

2021 ◽  
Vol 33 (2) ◽  
pp. 131-136
Author(s):  
J. Taprogge ◽  
J. Wadsley ◽  
E. Miles ◽  
G.D. Flux

Sign in / Sign up

Export Citation Format

Share Document