scholarly journals A population-based method to determine the time-integrated activity in molecular radiotherapy

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Deni Hardiansyah ◽  
Ade Riana ◽  
Peter Kletting ◽  
Nouran R. R. Zaid ◽  
Matthias Eiber ◽  
...  

Abstract Background The calculation of time-integrated activities (TIAs) for tumours and organs is required for dosimetry in molecular radiotherapy. The accuracy of the calculated TIAs is highly dependent on the chosen fit function. Selection of an adequate function is therefore of high importance. However, model (i.e. function) selection works more accurately when more biokinetic data are available than are usually obtained in a single patient. In this retrospective analysis, we therefore developed a method for population-based model selection that can be used for the determination of individual time-integrated activities (TIAs). The method is demonstrated at an example of [177Lu]Lu-PSMA-I&T kidneys biokinetics. It is based on population fitting and is specifically advantageous for cases with a low number of available biokinetic data per patient. Methods Renal biokinetics of [177Lu]Lu-PSMA-I&T from thirteen patients with metastatic castration-resistant prostate cancer acquired by planar imaging were used. Twenty exponential functions were derived from various parameterizations of mono- and bi-exponential functions. The parameters of the functions were fitted (with different combinations of shared and individual parameters) to the biokinetic data of all patients. The goodness of fits were assumed as acceptable based on visual inspection of the fitted curves and coefficients of variation CVs < 50%. The Akaike weight (based on the corrected Akaike Information Criterion) was used to select the fit function most supported by the data from the set of functions with acceptable goodness of fit. Results The function $$A_{1} { }\beta { }e^{{ - \left( {\lambda_{1} + \lambda_{{{\text{phys}}}} } \right)t}} + A_{1} { }\left( {1 - \beta } \right){ }e^{{ - \left( {\lambda_{{{\text{phys}}}} } \right)t}}$$ A 1 β e - λ 1 + λ phys t + A 1 1 - β e - λ phys t with shared parameter $$\beta$$ β was selected as the function most supported by the data with an Akaike weight of 97%. Parameters $$A_{1}$$ A 1 and $$\lambda_{1}$$ λ 1 were fitted individually for every patient while parameter $$\beta { }$$ β was fitted as a shared parameter in the population yielding a value of 0.9632 ± 0.0037. Conclusions The presented population-based model selection allows for a higher number of parameters of investigated fit functions which leads to better fits. It also reduces the uncertainty of the obtained Akaike weights and the selected best fit function based on them. The use of the population-determined shared parameter for future patients allows the fitting of more appropriate functions also for patients for whom only a low number of individual data are available.

2021 ◽  
Vol 2019 (1) ◽  
pp. 012079
Author(s):  
N Atikah ◽  
A Riana ◽  
A Dwi ◽  
Z Anwari ◽  
Misrawati ◽  
...  

Abstract Calculation of accurate time-integrated activity coefficients (TIACs) is desirable in nuclear medicine dosimetry. The accuracy of the calculated TIACs is highly dependent on the fit function. However, systematic studies of determining a good function for peptide-receptor radionuclide therapy (PRRT) in different patients have not been reported in the literature. The aim of this study was to individually determine the best function for the calculation of TIACs in tumor and kidneys using a model selection based on the goodness of fit criteria and Corrected Akaike Information Criterion (AICc). The data used in this study was pharmacokinetic data of 111In-DOTATATE in tumor and kidneys obtained from 4 PRRT patients. Eleven functions with various parameterizations were formulated to describe the biokinetic data of 111In-DOTATATE in tumor and kidneys. The model selection was performed by choosing the best function from the function with sufficient goodness of fit based on the smallest AICc. Based on the results of model selection, function A 1 -(λ 1+λphys )t was selected as the best function for all tumor and kidneys in patients with meningioma tumors. By using this function, the calculated of TIACs could be more accurate for future patients with meningioma tumor.


2021 ◽  
pp. 149-164
Author(s):  
Timothy E. Essington

The chapter “Model Selection” provides a brief overview of alternative ways of thinking about what is (are) the best model(s) and shows the core motivation behind the Akaike information criterion as a measure of the predictive ability of a model fitted via maximum likelihood. It then gives stepwise practical guidance for using information theory as a basis of model selection, including nested versus non-nested models, goodness of fit, and overdispersion. Advanced topics cover some of the philosophy of information theory, other types of information theory criteria, and other ways of evaluating the predictive ability of models. As an example, the chapter examines the case of the Western monarch butterfly (Danaus plexippus plexippus), which, over the past two decades, has experienced a 97% decline from its historical average abundance, declining by 86% from 2017 to 2018 alone. Undoubtedly, there is more than one cause—indeed, overwintering habitat loss and pesticide use are both believed to be important contributors to the decline. Adopting a hypothesis-evaluation framework makes it possible to consider multiple alternative hypotheses simultaneously and measure degrees of support for alternative hypotheses.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 447
Author(s):  
Riccardo Rossi ◽  
Andrea Murari ◽  
Pasquale Gaudio ◽  
Michela Gelfusa

The Bayesian information criterion (BIC), the Akaike information criterion (AIC), and some other indicators derived from them are widely used for model selection. In their original form, they contain the likelihood of the data given the models. Unfortunately, in many applications, it is practically impossible to calculate the likelihood, and, therefore, the criteria have been reformulated in terms of descriptive statistics of the residual distribution: the variance and the mean-squared error of the residuals. These alternative versions are strictly valid only in the presence of additive noise of Gaussian distribution, not a completely satisfactory assumption in many applications in science and engineering. Moreover, the variance and the mean-squared error are quite crude statistics of the residual distributions. More sophisticated statistical indicators, capable of better quantifying how close the residual distribution is to the noise, can be profitably used. In particular, specific goodness of fit tests have been included in the expressions of the traditional criteria and have proved to be very effective in improving their discriminating capability. These improved performances have been demonstrated with a systematic series of simulations using synthetic data for various classes of functions and different noise statistics.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1497
Author(s):  
Sara Neira ◽  
Araceli Gago-Arias ◽  
Isabel Gónzalez-Crespo ◽  
Jacobo Guiu-Souto ◽  
Juan Pardo-Montero

Pharmacokinetic modeling of the radiopharmaceuticals used in molecular radiotherapy is an important step towards accurate radiation dosimetry of such therapies. In this paper, we present a pharmacokinetic model for CLR1404, a phospholipid ether analog that, labeled with 124I/131I, has emerged as a promising theranostic agent. We follow a systematic approach for the model construction based on a decoupling process applied to previously published experimental data, and using the goodness-of-fit, Sobol’s sensitivity analysis, and the Akaike Information Criterion to construct the optimal form of the model, investigate potential simplifications, and study factor prioritization. This methodology was applied to previously published experimental human time-activity curves for 9 organs. The resulting model consists of 17 compartments involved in the CLR1404 metabolism. Activity dynamics in most tissues are well described by a blood contribution plus a two-compartment system, describing fast and slow uptakes. The model can fit both clinical and pre-clinical kinetic data of 124I/131I. In addition, we have investigated how simple fits (exponential and biexponential) differ from the complete model. Such fits, despite providing a less accurate description of time-activity curves, may be a viable alternative when limited data is available in a practical case.


Author(s):  
Magdalena STANISZEWSKA ◽  
Janette IKING ◽  
Katharina LÜCKERATH ◽  
Boris HADASCHIK ◽  
Ken HERRMANN ◽  
...  

Metrika ◽  
2021 ◽  
Author(s):  
Andreas Anastasiou ◽  
Piotr Fryzlewicz

AbstractWe introduce a new approach, called Isolate-Detect (ID), for the consistent estimation of the number and location of multiple generalized change-points in noisy data sequences. Examples of signal changes that ID can deal with are changes in the mean of a piecewise-constant signal and changes, continuous or not, in the linear trend. The number of change-points can increase with the sample size. Our method is based on an isolation technique, which prevents the consideration of intervals that contain more than one change-point. This isolation enhances ID’s accuracy as it allows for detection in the presence of frequent changes of possibly small magnitudes. In ID, model selection is carried out via thresholding, or an information criterion, or SDLL, or a hybrid involving the former two. The hybrid model selection leads to a general method with very good practical performance and minimal parameter choice. In the scenarios tested, ID is at least as accurate as the state-of-the-art methods; most of the times it outperforms them. ID is implemented in the R packages IDetect and breakfast, available from CRAN.


2006 ◽  
Vol 23 (5) ◽  
pp. 365-376 ◽  
Author(s):  
Henkjan Honing

While the most common way of evaluating a computational model is to see whether it shows a good fit with the empirical data, recent literature on theory testing and model selection criticizes the assumption that this is actually strong evidence for the validity of a model. This article presents a case study from music cognition (modeling the ritardandi in music performance) and compares two families of computational models (kinematic and perceptual) using three different model selection criteria: goodness-of-fit, model simplicity, and the degree of surprise in the predictions. In the light of what counts as strong evidence for a model’s validity—namely that it makes limited range, nonsmooth, and relatively surprising predictions—the perception-based model is preferred over the kinematic model.


BMJ Open ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. e035785
Author(s):  
Shukrullah Ahmadi ◽  
Florence Bodeau-Livinec ◽  
Roméo Zoumenou ◽  
André Garcia ◽  
David Courtin ◽  
...  

ObjectiveTo select a growth model that best describes individual growth trajectories of children and to present some growth characteristics of this population.SettingsParticipants were selected from a prospective cohort conducted in three health centres (Allada, Sekou and Attogon) in a semirural region of Benin, sub-Saharan Africa.ParticipantsChildren aged 0 to 6 years were recruited in a cohort study with at least two valid height and weight measurements included (n=961).Primary and secondary outcome measuresThis study compared the goodness-of-fit of three structural growth models (Jenss-Bayley, Reed and a newly adapted version of the Gompertz growth model) on longitudinal weight and height growth data of boys and girls. The goodness-of-fit of the models was assessed using residual distribution over age and compared with the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The best-fitting model allowed estimating mean weight and height growth trajectories, individual growth and growth velocities. Underweight, stunting and wasting were also estimated at age 6 years.ResultsThe three models were able to fit well both weight and height data. The Jenss-Bayley model presented the best fit for weight and height, both in boys and girls. Mean height growth trajectories were identical in shape and direction for boys and girls while the mean weight growth curve of girls fell slightly below the curve of boys after neonatal life. Finally, 35%, 27.7% and 8% of boys; and 34%, 38.4% and 4% of girls were estimated to be underweight, wasted and stunted at age 6 years, respectively.ConclusionThe growth parameters of the best-fitting Jenss-Bayley model can be used to describe growth trajectories and study their determinants.


Polar Biology ◽  
2021 ◽  
Vol 44 (2) ◽  
pp. 259-273
Author(s):  
Céline Cunen ◽  
Lars Walløe ◽  
Kenji Konishi ◽  
Nils Lid Hjort

AbstractChanges in the body condition of Antarctic minke whales (Balaenoptera bonaerensis) have been investigated in a number of studies, but remain contested. Here we provide a new analysis of body condition measurements, with particularly careful attention to the statistical model building and to model selection issues. We analyse body condition data for a large number (4704) of minke whales caught between 1987 and 2005. The data consist of five different variables related to body condition (fat weight, blubber thickness and girth) and a number of temporal, spatial and biological covariates. The body condition variables are analysed using linear mixed-effects models, for which we provide sound biological motivation. Further, we conduct model selection with the focused information criterion (FIC), reflecting the fact that we have a clearly specified research question, which leads us to a clear focus parameter of particular interest. We find that there has been a substantial decline in body condition over the study period (the net declines are estimated to 10% for fat weight, 7% for blubber thickness and 3% for the girth). Interestingly, there seems to be some differences in body condition trends between males and females and in different regions of the Antarctic. The decline in body condition could indicate major changes in the Antarctic ecosystem, in particular, increased competition from some larger krill-eating whale species.


Sign in / Sign up

Export Citation Format

Share Document