importin alpha
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 9)

H-INDEX

19
(FIVE YEARS 1)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
S. Tsimbalyuk ◽  
C. M. Donnelly ◽  
J. K. Forwood

AbstractShuttling of macromolecules between nucleus and cytoplasm is a tightly regulated process mediated through specific interactions between cargo and nuclear transport proteins. In the classical nuclear import pathway, importin alpha recognizes cargo exhibiting a nuclear localization signal, and this complex is transported through the nuclear pore complex by importin beta. Humans possess seven importin alpha isoforms that can be grouped into three subfamilies, with many cargoes displaying specificity towards these importin alpha isoforms. The cargo binding sites within importin alpha isoforms are highly conserved in sequence, suggesting that specificity potentially relies on structural differences. Structures of some importin alpha isoforms, both in cargo-bound and free states, have been previously solved. However, there are currently no known structures of cargo free importin alpha isoforms within subfamily 3 (importin alpha 5, 6, 7). Here, we present the first crystal structure of human importin alpha 7 lacking the IBB domain solved at 2.5 Å resolution. The structure reveals a typical importin alpha architecture comprised of ten armadillo repeats and is most structurally conserved with importin alpha 5. Very little difference in structure was observed between the cargo-bound and free states, implying that importin alpha 7 does not undergo conformational change when binding cargo. These structural insights provide a strong platform for further evaluation of structure–function relationships and understanding how isoform specificity within the importin alpha family plays a role in nuclear transport in health and disease.


2021 ◽  
pp. 1-8
Author(s):  
Mossammad U. C. Sultana ◽  
Md. Giash Uddin ◽  
Md. Billal Hossain ◽  
Md Ackas Ali ◽  
Zannatul Ferdous Sonia ◽  
...  

2021 ◽  
Author(s):  
Junfei Ma ◽  
Shachinthaka D. Dissanayaka Mudiyanselage ◽  
Woong June Park ◽  
Mo Wang ◽  
Ryuta Takeda ◽  
...  

AbstractThe prevailing view regarding intracellular RNA trafficking in eukaryotic cells describes that RNAs transcribed in the nucleus either stay in the nucleus or cross the nuclear envelope entering the cytoplasm for function. Interestingly, emerging evidence illustrates numerous functional RNAs trafficking in the reverse direction from the cytoplasm to the nucleus. However, the mechanism underlying the RNA nuclear import has not been well elucidated. Viroids are single-stranded circular noncoding RNAs that infect plants. Using nuclear-replicating viroids as a model, we showed that cellular Importin alpha-4 is likely involved in viroid RNA nuclear import, empirically supporting the involvement of Importin-based cellular pathway in RNA nuclear import. We also confirmed the involvement of a cellular protein (Virp1) that binds both Importin alpha-4 and viroids. Furthermore, a conserved C-loop in nuclear-replicating viroids is critical for Virp1 binding. Disrupting C-loop impairs Virp1 binding, viroid nuclear accumulation and infectivity. Further, C-loop exists in a subviral satellite noncoding RNA that relies on Virp1 for nuclear import. These results have significant implications for understanding the infection process of subviral agents. In addition, our data outline a cellular pathway responsible for the nuclear import of RNAs and uncover a 3-dimensional RNA motif-based regulation over RNA nuclear import.


2021 ◽  
Author(s):  
Piotr Grabarczyk ◽  
Martin Delin ◽  
Dorota Rogińska ◽  
Lukas Schulig ◽  
Hannes Forkel ◽  
...  

The Krüppel-like transcription factor BCL11B is characterized by wide tissue distribution and crucial functions in key developmental and cellular processes and various pathologies including cancer or HIV infection. Although basics of BCL11B activity and relevant interactions with other proteins were uncovered, how this exclusively nuclear protein localizes to its compartment remained unclear. Here, we demonstrate that unlike other KLFs, BCL11B does not require the C-terminal DNA-binding domain to pass through the nuclear envelope but encodes an independent, previously unidentified nuclear localization signal (NLS) which is located distantly from the zinc finger domains and fulfills the essential criteria of an autonomous NLS. First, it can redirect a heterologous cytoplasmic protein to the nucleus. Second, its mutations cause aberrant localization of the protein of origin. Finally, we provide experimental and in silico evidences of the direct interaction with importin alpha. The relative conservation of this motif allows formulating a consensus sequence (K/R)K-X13-14-KR+K++ which can be found in all BCL11B orthologues among vertebrates and in the closely related protein BCL11A.


2021 ◽  
Author(s):  
Hamine C Oliveira ◽  
Taina D da Silva ◽  
Guilherme H Salvador ◽  
Ivan R Moraes ◽  
Cintia A Fukuda ◽  
...  

The classical nuclear import pathway is mediated by importin (Impα and Impβ), which recognizes the cargo protein by its Nuclear Localization Sequence (NLS). NLSs have been extensively studied resulting in different proposed consensus; however, recent studies showed that exceptions may occur. This mechanism may be also dependent on specific characteristics of different Impα. Aiming to better understand the importance of specific residues from consensus and adjacent regions of NLSs, we studied different mutations of a high affinity NLS complexed to Impα by crystallography and calorimetry. We showed that although the consensus sequence allows Lys or Arg residues at the second residue of a monopartite sequence, the presence of Arg is very important to its binding in major and minor sites of Impα. Mutations in the N or C-terminus (position P1 or P6) of the NLS drastically reduces their affinity to the receptor, which is corroborated by the loss of hydrogen bonds and hydrophobic interactions. Surprisingly, a mutation in the far N-terminus of the NLS led to an increase in the affinity for both binding sites, corroborated by the structure with an additional hydrogen bond. The binding of NLSs to the human variant Impα1 revealed that these are similar to those found in structures presented here. For human variant Impα3 the bindings are only relevant for the major site. This study increases understanding of specific issues sparsely addressed in previous studies that are important to the task of predicting NLSs, which will be relevant in the eventual design of synthetic NLSs.


2020 ◽  
Author(s):  
Arafat Rahman Oany ◽  
Tahmina Pervin ◽  
Mohammad Ali Moni

AbstractPlasmodium falciparum, the prime causative agent of malaria, is responsible for 4, 05,000 deaths per year and fatality rates are higher among the children aged below 5 years. The emerging distribution of the multi-drug resistant P. falciparum becomes a worldwide concern, so the identification of unique targets and novel inhibitors is a prime need now. In the present study, we have employed pharmacoinformatics approaches to analyze 265 lead-like compounds from PubChem databases for virtual screening. Thereafter, 15 lead-like compounds were docked within the active side pocket of importin alpha. Comparative ligand properties and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile were also assessed. Finally, a novel inhibitor was designed and assessed computationally for its efficacy. From the comparative analysis we have found that our screened compounds possess better results than the existing lead ivermectin; having the highest binding energy of −15.6 kcal/mol, whereas ivermectin has −12.4kcal/mol. The novel lead compound possessed more fascinating output without deviating any of the rules of Lipinski. It also possessed higher bioavailability and the drug-likeness score of 0.55 and 0.71, respectively compared to ivermectin. Furthermore, the binding study was confirmed by molecular dynamics simulation over 25 ns by evaluating the stability of the complex. Finally, all the screened compounds and the novel compound showed promising ADMET properties likewise. To end, we hope that our proposed screened compounds, as well as the novel compound, might give some advances to treat malaria efficiently in vitro and in vivo.


2020 ◽  
Vol 36 (5) ◽  
pp. 9-9
Author(s):  
Redaktion Facharztmagazine
Keyword(s):  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Natália E. Bernardes ◽  
Cintia A. Fukuda ◽  
Tainá D. da Silva ◽  
Hamine C. de Oliveira ◽  
Andrea C. de Barros ◽  
...  

2019 ◽  
Vol 3 (9) ◽  
pp. 440-446 ◽  
Author(s):  
Yan Liu ◽  
Ruth Ann Veach ◽  
Jozef Zienkiewicz ◽  
Kelli L. Boyd ◽  
Taylor E. Smith ◽  
...  

2018 ◽  
Vol 31 (11) ◽  
pp. 1134-1144 ◽  
Author(s):  
Miryam Pérez-Cañamás ◽  
Carmen Hernández

Despite the fact that replication of plus-strand RNA viruses takes place in the cytoplasm of host cells, different proteins encoded by these infectious agents have been shown to localize in the nucleus, with high accumulation at the nucleolus. In most cases, the molecular determinants or biological significance of such subcellular localization remains elusive. Recently, we reported that protein p37 encoded by Pelargonium line pattern virus (family Tombusviridae) acts in both RNA packaging and RNA silencing suppression. Consistently with these functions, p37 was detected in the cytoplasm of plant cells, although it was also present in the nucleus and, particularly, in the nucleolus. Here, we searched for further insights into factors influencing p37 nucleolar localization and into its potential relevance for viral infection. Besides mapping the protein region containing the nucleolar localization signal, we have found that p37 interacts with distinct members of the importin alpha family—main cellular transporters for nucleo-cytoplasmic traffic of proteins—and that these interactions are crucial for nucleolar targeting of p37. Impairment of p37 nucleolar localization through downregulation of importin alpha expression resulted in a reduction of viral accumulation, suggesting that sorting of the protein to the major subnuclear compartment is advantageous for the infection process.


Sign in / Sign up

Export Citation Format

Share Document