open complex formation
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 8)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Subhas C Bera ◽  
Pim P. B. America ◽  
Santeri Maatsola ◽  
Mona Seifert ◽  
Eugeniu Ostrofet ◽  
...  

Transcription initiation is the first step in gene expression, and is therefore strongly regulated in all domains of life. The RNA polymerase (RNAP) first associates with the initiation factor σ to form a holoenzyme, which binds, bends and opens the promoter in a succession of reversible states. These states are critical for transcription regulation, but remain poorly understood. Here, we addressed the mechanism of open complex formation by monitoring its assembly/disassembly kinetics on individual consensus lacUV5 promoters using high – throughput single-molecule magnetic tweezers. We probed the key protein – DNA interactions governing the open-complex formation and dissociation pathway by modulating the dynamics at different concentrations of monovalent salts and varying temperatures. Consistent with ensemble studies, we observed that RPO is a stable, slowly reversible state that is preceded by a kinetically significant open intermediate (RPI), from which the holoenzyme dissociates. A strong anion concentration and type dependence indicates that the RPO stabilization may involve sequence – independent interactions between the DNA and the holoenzyme, driven by a non – Coulombic effect consistent with the non-template DNA strand interacting with σ and the RNAP β subunit. The temperature dependence provides the energy scale of open complex formation and further supports the existence of additional intermediates.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yeonoh Shin ◽  
M. Zuhaib Qayyum ◽  
Danil Pupov ◽  
Daria Esyunina ◽  
Andrey Kulbachinskiy ◽  
...  

AbstractRibosomal RNA (rRNA) is most highly expressed in rapidly growing bacteria and is drastically downregulated under stress conditions by the global transcriptional regulator DksA and the alarmone ppGpp. Here, we determined cryo-electron microscopy structures of the Escherichia coli RNA polymerase (RNAP) σ70 holoenzyme during rRNA promoter recognition with and without DksA/ppGpp. RNAP contacts the UP element using dimerized α subunit carboxyl-terminal domains and scrunches the template DNA with the σ finger and β’ lid to select the transcription start site favorable for rapid promoter escape. Promoter binding induces conformational change of σ domain 2 that opens a gate for DNA loading and ejects σ1.1 from the RNAP cleft to facilitate open complex formation. DksA/ppGpp binding also opens the DNA loading gate, which is not coupled to σ1.1 ejection and impedes open complex formation. These results provide a molecular basis for the exceptionally active rRNA transcription and its vulnerability to DksA/ppGpp.


2020 ◽  
Author(s):  
Yeonoh Shin ◽  
M. Zuhaib Qayyum ◽  
Danil Pupov ◽  
Daria Esyunina ◽  
Andrey Kulbachinskiy ◽  
...  

Ribosomal RNA (rRNA) is the most highly expressed gene in rapidly growing bacteria and is drastically downregulated under stress conditions by the global transcriptional regulator DksA and the alarmone ppGpp. To reveal the mechanism of highly regulated rRNA transcription, we determined cryo-electron microscopy structures of the Escherichia coli RNA polymerase (RNAP) σ70 holoenzyme at different steps of rRNA promoter recognition with and without DksA/ppGpp. RNAP contacts the UP element of rRNA promoter using the dimerized α subunit carboxyl-terminal domain and scrunches the template DNA with the σfinger and β’lid to select a transcription start site favorable for rRNA expression. Promoter DNA binding to RNAP induces conformational change of the σ domain 2 that opens a gate for DNA loading and ejects σ1.1 from the RNAP cleft to facilitate open complex formation. DksA/ppGpp binding to RNAP also opens the DNA loading gate, but it is not coupled to σ1.1 ejection and impedes the open complex formation of the rRNA promoter due to its G+C rich discriminator sequence. Mutations in σ1.1 or the β’lid stabilize the RNAP and rRNA promoter complex and decrease its sensitivity to DksA/ppGpp. These results provide a molecular basis for exceptionally active rRNA transcription and for its vulnerability to DksA/ppGpp.


2019 ◽  
Vol 47 (13) ◽  
pp. 6685-6698 ◽  
Author(s):  
Drake Jensen ◽  
Ana Ruiz Manzano ◽  
Jayan Rammohan ◽  
Christina L Stallings ◽  
Eric A Galburt

Abstract The pathogen Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, enacts unique transcriptional regulatory mechanisms when subjected to host-derived stresses. Initiation of transcription by the Mycobacterial RNA polymerase (RNAP) has previously been shown to exhibit different open complex kinetics and stabilities relative to Escherichia coli (Eco) RNAP. However, transcription initiation rates also depend on the kinetics following open complex formation such as initial nucleotide incorporation and subsequent promoter escape. Here, using a real-time fluorescence assay, we present the first in-depth kinetic analysis of initial transcription and promoter escape for the Mtb RNAP. We show that in relation to Eco RNAP, Mtb displays slower initial nucleotide incorporation but faster overall promoter escape kinetics on the Mtb rrnAP3 promoter. Furthermore, in the context of the essential transcription factors CarD and RbpA, Mtb promoter escape is slowed via differential effects on initially transcribing complexes. Finally, based on their ability to increase the rate of open complex formation and decrease the rate of promoter escape, we suggest that CarD and RbpA are capable of activation or repression depending on the rate-limiting step of a given promoter's basal initiation kinetics.


Sign in / Sign up

Export Citation Format

Share Document