jacket platform
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 22)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
Vol 246 ◽  
pp. 110554
Author(s):  
Yan Huang ◽  
Siyang Huang


2021 ◽  
Vol 11 (22) ◽  
pp. 10745
Author(s):  
Sajib Sarker ◽  
Dookie Kim ◽  
Md Samdani Azad ◽  
Chana Sinsabvarodom ◽  
Seongoh Guk

This research identifies the significant optimal intensity measures (IM) for seismic performance assessments of the fixed offshore jacket platforms. A four-legged jacket platform for the oil and gas operation is deployed to investigate the seismic performance. The jacket platform is applied with nonlinearly modeled using finite element (FE) software OpenSees. A total of 80 ground motions and 21 different IMs are incorporated for numerical analyses. Nonlinear time-history analyses are performed to obtain the jacket structure’s engineering demand parameters (EDP): peak acceleration and displacement at the top of the structure. Four important statistical parameters: practicality, efficiency, proficiency, and coefficient of determination, are then calculated to find the significant IMs for seismic performance of the jacket structure. The results show that acceleration-related IMs: effective design acceleration (EDA), A95 parameter, and peak ground acceleration (PGA) are optimal IMs, and the acceleration-related IMs have good agreements with the acceleration-related EDP.





2021 ◽  
Vol 115 ◽  
pp. 102844
Author(s):  
Wen Chen ◽  
Chunbao Xiong ◽  
Lina Yu ◽  
Sida Lian ◽  
Zhuang Ye


2021 ◽  
Author(s):  
Ishwarya Srikanth ◽  
M. Arockiasamy

Abstract This paper presents deterioration models for maintenance planning of offshore jacket platform based on two methods: i) stochastic Markov-chain based model and ii) stochastic-mechanistic deterioration models based on steel corrosion rates. Markov-chain models require the estimation of transition probability matrix (TPM), which is typically derived from the inspection data. The global structural health condition of the jacket is computed based on the condition of individual elements and their criticality in terms of failure consequence. The criticality factors are established based on nonlinear static redundancy analyses. This method can model deterioration when routine inspection records of jacket members are available. When there is scarcity of inspection records, stochastic-mechanistic deterioration modeling approach can be used. Monte-Carlo simulations with established corrosion wastage models are utilized to estimate the time-dependent deterioration of jacket legs, horizontal and diagonal bracings in splash and immersion zones. This method is proposed when there is scarcity of inspection records. The deterioration models are further utilized to predict the timing for Maintenance, Repair and Rehabilitation (MRR) actions, and estimate the residual service life of the jacket platform. This study demonstrates the application of the proposed deterioration modeling approaches with a case study of a typical 4-legged offshore jacket platform.



2021 ◽  
Vol 649 (1) ◽  
pp. 012068
Author(s):  
R D Riyanto ◽  
I H Helvacioglu ◽  
M Murdjito ◽  
E B Djatmiko ◽  
K Sambodho ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document