Dynamic response assessment of an offshore jacket platform with semi-active fuzzy-based controller: A case study

2021 ◽  
Vol 238 ◽  
pp. 109747
Author(s):  
Behnam Ghadimi ◽  
Touraj Taghikhany
2021 ◽  
Vol 649 (1) ◽  
pp. 012068
Author(s):  
R D Riyanto ◽  
I H Helvacioglu ◽  
M Murdjito ◽  
E B Djatmiko ◽  
K Sambodho ◽  
...  

2015 ◽  
Vol 100 ◽  
pp. 35-45 ◽  
Author(s):  
Dongfeng Mao ◽  
Chao Zhong ◽  
Laibin Zhang ◽  
Gui Chu

2021 ◽  
Vol 115 ◽  
pp. 102844
Author(s):  
Wen Chen ◽  
Chunbao Xiong ◽  
Lina Yu ◽  
Sida Lian ◽  
Zhuang Ye

2014 ◽  
Vol 36 (4) ◽  
pp. 245-254
Author(s):  
N. T. Khiem ◽  
P. T. Hang

In present paper, the spectral approach is proposed for analysis of multiple cracked beam subjected to general moving load that allows us to obtain explicitly dynamic response of the beam in frequency domain. The obtained frequency response is straightforward to calculate time history response by using the FFT algorithm and provides a novel tool to investigate effect of position and depth of multiple cracks on the dynamic response. The analysis is important to develop the spectral method for identification of multiple cracked beam by using its response to moving load. The theoretical development is illustrated and validated by numerical case study.


2017 ◽  
Vol 20 (11) ◽  
pp. 1623-1631 ◽  
Author(s):  
Patrick Salcher ◽  
Christoph Adam

The objective of this study is to provide the engineering practice with a tool for simplified dynamic response assessment of high-speed railway bridges in the pre-design phase. To serve this purpose, a non-dimensional representation of the characteristic parameters of the train–bridge interaction problem is described and extended based on a beam bridge model subjected to the static axle loads of the crossing high-speed train. The non-dimensional parameter representation is used to discuss several code-related design issues. It is revealed that in an admitted parameter domain, a code-regulated static assessment of high-speed railway bridges may under-predict the actual dynamic response. Furthermore, the minimum mass of a bridge as a function of the characteristic parameters is presented to comply with the maximum bridge acceleration specified in standards.


Author(s):  
Krishna Chytanya Chinnam ◽  
Arnaldo Casalotti ◽  
Giulia Lanzara

Abstract In this paper the dynamic response of an electrospun nanocomposite piezoelectric microfiber is investigated. The microfiber is formed by magnetic nanoparticles dispersed in Polyvinylidene (PVDF) matrix. Focus is given on the influence of an AC electric field on the dynamic response of the microfiber. In particular, the resonance frequency of the fiber was assessed under an increasing AC electric field at a wide range of frequencies. The electromechanical test results show that the resonance frequency of the fiber is influenced by the applied voltage and, for this case study, it decreases with increasing voltage. The results reported in this paper suggest that, once the mechanism behind such response is fully understood, composite piezoelectric microfibers can be used to fine-tune the resonance frequency of hosting devices.


Sign in / Sign up

Export Citation Format

Share Document