benzyl radicals
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 4)

H-INDEX

31
(FIVE YEARS 1)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 475
Author(s):  
Liang Nie ◽  
Xiangjun Peng ◽  
Haiping He ◽  
Jian Hu ◽  
Zhiyang Yao ◽  
...  

The development of graphene oxide–based heterogeneous materials with an economical and environmentally–friendly manner has the potential to facilitate many important organic transformations but proves to have few relevant reported reactions. Herein, we explore the synergistic role of catalytic systems driven by graphene oxide and visible light that form nucleophilic alkoxyl radical intermediates, which enable an anti-Markovnikov addition exclusively to the terminal alkenes, and then the produced benzyl radicals are subsequently added with N–methylquinoxalones. This photoinduced cascade radical difunctionalization of olefins offers a concise and applicable protocol for constructing alkoxyl–substituted N–methylquinoxalones.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2153 ◽  
Author(s):  
R. Aitken ◽  
Lorna Murray ◽  
Alexandra Slawin

Four new, stabilized phosphonium ylides containing a 2-(benzyl(methyl)amino)phenyl group have been prepared and characterized and are found, upon pyrolysis under gas-phase flow conditions, to lose Ph3PO and benzyl radicals to afford new heterocyclic products resulting from domino cyclization of both C- and N-centered radicals. Most products arise from processes of the former type and have quinoline, phenanthridine, or ring-fused phenanthridine structures, while in one case, a process of the latter type leads to a benzocarbazole product. The X-ray structure of a 2-(methyl(tosyl)amino)phenyl ylide is also reported.


2018 ◽  
Vol 20 (10) ◽  
pp. 7180-7189 ◽  
Author(s):  
Mathias Steglich ◽  
Andras Bodi ◽  
John P. Maier ◽  
Patrick Hemberger

Resonant one-color two-photon ionization spectroscopy and mass-selected threshold photoelectron spectroscopy were applied to study the electronic doublet states of the three xylyl (methyl-benzyl) radicals above 3.9 eV as well as the singlet and triplet states of the cations up to 10.5 eV.


2018 ◽  
Author(s):  
Erin Stache ◽  
Alyssa B. Ertel ◽  
Tomislav Rovis ◽  
Abigail G. Doyle

Alcohols and carboxylic acids are ubiquitous functional groups found in organic molecules that could serve as radical precursors, but C–O bonds remain difficult to activate. We report a synthetic strategy for direct access to both alkyl and acyl radicals from these ubiquitous functional groups via photoredox catalysis. This method exploits the unique reactivity of phosphoranyl radicals, generated from a polar/SET crossover between a phosphine radical cation and an oxygen centered nucleophile. We first show the desired reactivity in the reduction of benzylic alcohols to the corresponding benzyl radicals with terminal H-atom trapping to afford the deoxygenated product. Using the same method, we demonstrate access to synthetically versatile acyl radicals which enables the reduction of aromatic and aliphatic carboxylic acids to the corresponding aldehydes with exceptional chemoselectivity. This protocol also transforms carboxylic acids to heterocycles and cyclic ketones via intramolecular acyl radical cyclizations to forge new C–O, C–N and C–C bonds in a single step.


2018 ◽  
Author(s):  
Erin Stache ◽  
Alyssa B. Ertel ◽  
Tomislav Rovis ◽  
Abigail G. Doyle

Alcohols and carboxylic acids are ubiquitous functional groups found in organic molecules that could serve as radical precursors, but C–O bonds remain difficult to activate. We report a synthetic strategy for direct access to both alkyl and acyl radicals from these ubiquitous functional groups via photoredox catalysis. This method exploits the unique reactivity of phosphoranyl radicals, generated from a polar/SET crossover between a phosphine radical cation and an oxygen centered nucleophile. We first show the desired reactivity in the reduction of benzylic alcohols to the corresponding benzyl radicals with terminal H-atom trapping to afford the deoxygenated product. Using the same method, we demonstrate access to synthetically versatile acyl radicals which enables the reduction of aromatic and aliphatic carboxylic acids to the corresponding aldehydes with exceptional chemoselectivity. This protocol also transforms carboxylic acids to heterocycles and cyclic ketones via intramolecular acyl radical cyclizations to forge new C–O, C–N and C–C bonds in a single step.


2017 ◽  
Vol 24 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Dietmar Kuck ◽  
Sandra Heitkamp ◽  
Matthias Letzel ◽  
Ishtiaq Ahmed ◽  
Karsten Krohn

Sign in / Sign up

Export Citation Format

Share Document