plantarflexor muscles
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 5)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Stefano Longo ◽  
Emiliano Cè ◽  
Angela Valentina Bisconti ◽  
Susanna Rampichini ◽  
Christian Doria ◽  
...  

Abstract Purpose We investigated the effects of 12 weeks of passive static stretching training (PST) on force-generating capacity, passive stiffness, muscle architecture of plantarflexor muscles. Methods Thirty healthy adults participated in the study. Fifteen participants (STR, 6 women, 9 men) underwent 12-week plantarflexor muscles PST [(5 × 45 s-on/15 s-off) × 2exercises] × 5times/week (duration: 2250 s/week), while 15 participants (CTRL, 6 women, 9 men) served as control (no PST). Range of motion (ROM), maximum passive resistive torque (PRTmax), triceps surae architecture [fascicle length, fascicle angle, and thickness], passive stiffness [muscle–tendon complex (MTC) and muscle stiffness], and plantarflexors maximun force-generating capacity variables (maximum voluntary contraction, maximum muscle activation, rate of torque development, electromechanical delay) were calculated Pre, at the 6th (Wk6), and the 12th week (Wk12) of the protocol in both groups. Results Compared to Pre, STR ROM increased (P < 0.05) at Wk6 (8%) and Wk12 (23%). PRTmax increased at Wk12 (30%, P < 0.05), while MTC stiffness decreased (16%, P < 0.05). Muscle stiffness decreased (P < 0.05) at Wk6 (11%) and Wk12 (16%). No changes in triceps surae architecture and plantarflexors maximum force-generating capacity variables were found in STR (P > 0.05). Percentage changes in ROM correlated with percentage changes in PRTmax (ρ = 0.62, P = 0.01) and MTC stiffness (ρ = − 0.78, P = 0.001). In CTRL, no changes (P > 0.05) occurred in any variables at any time point. Conclusion The expected long-term PST-induced changes in ROM were associated with modifications in the whole passive mechanical properties of the ankle joint, while maximum force-generating capacity characteristics were preserved. 12 weeks of PST do not seem a sufficient stimulus to induce triceps surae architectural changes.


2021 ◽  
Vol 35 (1) ◽  
pp. 141-146 ◽  
Author(s):  
Kosuke Takeuchi ◽  
Masahiro Takemura ◽  
Masatoshi Nakamura ◽  
Fumiko Tsukuda ◽  
Shumpei Miyakawa

2019 ◽  
Vol 238 (1) ◽  
pp. 39-50 ◽  
Author(s):  
J. W. Cohen ◽  
A. Gallina ◽  
T. D. Ivanova ◽  
T. Vieira ◽  
D. J. McAndrew ◽  
...  

2019 ◽  
Vol 51 (Supplement) ◽  
pp. 74
Author(s):  
Hayden K. Giuliani ◽  
Gena R. Gerstner ◽  
Jacob A. Mota ◽  
Eric D. Ryan

2017 ◽  
Vol 117 (4) ◽  
pp. 1615-1624 ◽  
Author(s):  
Jacqueline A. Palmer ◽  
Ryan Zarzycki ◽  
Susanne M. Morton ◽  
Trisha M. Kesar ◽  
Stuart A. Binder-Macleod

Imbalance of corticomotor excitability between the paretic and nonparetic limbs has been associated with the extent of upper extremity motor recovery poststroke, is greatly influenced by specific testing conditions such as the presence or absence of volitional muscle activation, and may vary across muscle groups. However, despite its clinical importance, poststroke corticomotor drive to lower extremity muscles has not been thoroughly investigated. Additionally, whereas conventional gait rehabilitation strategies for stroke survivors focus on paretic limb foot drop and dorsiflexion impairments, most contemporary literature has indicated that paretic limb propulsion and plantarflexion impairments are the most significant limiters to poststroke walking function. The purpose of this study was to compare corticomotor excitability of the dorsi- and plantarflexor muscles during resting and active conditions in individuals with good and poor poststroke walking recovery and in neurologically intact controls. We found that plantarflexor muscles showed reduced corticomotor symmetry between paretic and nonparetic limbs compared with dorsiflexor muscles in individuals with poor poststroke walking recovery during active muscle contraction but not during rest. Reduced plantarflexor corticomotor symmetry during active muscle contraction was a result of reduced corticomotor drive to the paretic muscles and enhanced corticomotor drive to the nonparetic muscles compared with the neurologically intact controls. These results demonstrate that atypical corticomotor drive exists in both the paretic and nonparetic lower limbs and implicate greater severity of corticomotor impairments to plantarflexor vs. dorsiflexor muscles during muscle activation in stroke survivors with poor walking recovery. NEW & NOTEWORTHY The present study observed that lower-limb corticomotor asymmetry resulted from both reduced paretic and enhanced nonparetic limb corticomotor excitability compared with neurologically intact controls. The most asymmetrical corticomotor drive was observed in the plantarflexor muscles of individuals with poor poststroke walking recovery. This suggests that neural function of dorsi- and plantarflexor muscles in both paretic and nonparetic limbs may play a role in poststroke walking function, which may have important implications when developing targeted poststroke rehabilitation programs to improve walking ability.


2015 ◽  
Vol 118 (12) ◽  
pp. 1467-1473 ◽  
Author(s):  
Dominique De Jaeger ◽  
Venus Joumaa ◽  
Walter Herzog

In humans, enhanced joint range of motion is observed after static stretch training and results either from an increased stretch tolerance or from a change in the biomechanical properties of the muscle-tendon unit. We investigated the effects of an intermittent stretch training on muscle biomechanical and structural variables. The left plantarflexors muscles of seven anesthetized New Zealand (NZ) White rabbits were passively and statically stretched three times a week for 4 wk, while the corresponding right muscles were used as nonstretched contralateral controls. Before and after the stretching protocol, passive torque produced by the left plantarflexor muscles as a function of the ankle angle was measured. The left and right plantarflexor muscles were harvested from dead rabbits and used to quantify possible changes in muscle structure. Significant mass and serial sarcomere number increases were observed in the stretched soleus but not in the plantaris or medial gastrocnemius. This difference in adaptation between the plantarflexors is thought to be the result of their different fiber type composition and pennation angles. Neither titin isoform nor collagen amount was modified in the stretched compared with the control soleus muscle. Passive torque developed during ankle dorsiflexion was not modified after the stretch training on average, but was decreased in five of the seven experimental rabbits. Thus, an intermittent stretching program similar to those used in humans can produce a change in the muscle structure of NZ White rabbits, which was associated in some rabbits with a change in the biomechanical properties of the muscle-tendon unit.


AGE ◽  
2014 ◽  
Vol 36 (4) ◽  
Author(s):  
Eric D. Ryan ◽  
Trent J. Herda ◽  
Pablo B. Costa ◽  
Ashley A. Herda ◽  
Joel T. Cramer

2013 ◽  
Vol 115 (4) ◽  
pp. 468-473 ◽  
Author(s):  
R. Csapo ◽  
J. Hodgson ◽  
R. Kinugasa ◽  
V. R. Edgerton ◽  
S. Sinha

The present study investigated the mechanical role of the dorsoventral curvature of the Achilles tendon in the conversion of the shortening of the plantarflexor muscles into ankle joint rotation. Dynamic, sagittal-plane magnetic resonance spin-tagged images of the ankle joint were acquired in six healthy subjects during both passive and active plantarflexion movements driven by a magnetic resonance compatible servomotor-controlled foot-pedal device. Several points on these images were tracked to determine the 1) path and deformation of the Achilles tendon, 2) ankle's center of rotation, and 3) tendon moment arms. The degree of mechanical amplification of joint movement was calculated as the ratio of the displacements of the calcaneus and myotendinous junction. In plantarflexion, significant deflection of the Achilles tendon was evident in both the passive (165.7 ± 7.4°; 180° representing a straight tendon) and active trials (166.9 ± 8.8°). This bend in the dorsoventral direction acts to move the Achilles tendon closer to the ankle's center of rotation, resulting in an ∼5% reduction of moment arm length. Over the entire range of movement, the overall displacement of the calcaneus exceeded the displacement of the myotendinous junction by ∼37%, with the mechanical gains being smaller in dorsi- and larger in plantarflexed joint positions. This is the first study to assess noninvasively and in vivo using MRI the curvature of the Achilles tendon during both passive and active plantarflexion movements. The dorsoventral tendon curvature amplifies the shortening of the plantarflexor muscles, resulting in a greater displacement of the tendon's insertion into the calcaneus compared with its origin.


Sign in / Sign up

Export Citation Format

Share Document