postsynaptic density protein
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 10)

H-INDEX

26
(FIVE YEARS 3)

2020 ◽  
Vol 119 (3) ◽  
pp. 667-689 ◽  
Author(s):  
Nazahiyah A. Rodzli ◽  
Michael P. Lockhart-Cairns ◽  
Colin W. Levy ◽  
John Chipperfield ◽  
Louise Bird ◽  
...  

2020 ◽  
Vol 24 (Suppl 1) ◽  
pp. S28-38
Author(s):  
Minha Hong ◽  
Mia Kim ◽  
Tae-Woon Kim ◽  
Sang-Seo Park ◽  
Myung-Ki Kim ◽  
...  

Purpose: Thrombotic stroke is a type of ischemic stroke characterized by motor dysfunction and memory impairments. In the present study, the effect of treadmill exercise on motor function and short-term memory was evaluated in relation with synaptic plasticity in the mice with photothrombotic stroke.Methods: Photothrombotic stroke was induced by cortical photothrombotic vascular occlusion. The mice in the treadmill exercise groups performed running on a motorized treadmill for 28 days. Motor function was determined using rota-rod test and foot fault test. Step-through avoidance task was conducted to evaluate short-term memory. Immunohistochemistry for 5-bromo-2′-deoxyuridine and doublecortin was conducted to detect new cell generation. Postsynaptic density protein 95, synaptophysin, brain-derived neurotrophic factor (BDNF), and tyrosine kinase B receptor (TrkB) were determined using western blot. The number of dendritic spines was determined using Golgi stain.Results: Treadmill exercise improved motor function and short-term memory in mice with the photothrombotic stroke. The infarct size was reduced and the number of dendritic spines and expression of postsynaptic density protein 95 and synaptophysin in the peri-infarct cortex and hippocampus were increased by treadmill exercise in photothrombotic stroke mice. Treadmill exercise enhanced neurogenesis through increasing the expression of the hippocampal BDNF and TrkB in photothrombotic stroke mice.Conclusions: Treadmill exercise improved motor function and short-term memory through increasing synaptic plasticity and neurogenesis in photothrombotic stroke mice. Treadmill exercise can be used as an effective treatment strategy to improve brain function related to stroke.


2020 ◽  
Vol 118 (3) ◽  
pp. 336a
Author(s):  
George L. Hamilton ◽  
Nabanita Saikia ◽  
Justin Park ◽  
Jakub Kubiak ◽  
Claus A. Seidel ◽  
...  

2019 ◽  
Vol 295 (7) ◽  
pp. 1992-2000 ◽  
Author(s):  
Louise Laursen ◽  
Elin Karlsson ◽  
Stefano Gianni ◽  
Per Jemth

Cell scaffolding and signaling are governed by protein–protein interactions. Although a particular interaction is often defined by two specific domains binding to each other, this interaction often occurs in the context of other domains in multidomain proteins. How such adjacent domains form supertertiary structures and modulate protein–protein interactions has only recently been addressed and is incompletely understood. The postsynaptic density protein PSD-95 contains a three-domain supramodule, denoted PSG, which consists of PDZ, Src homology 3 (SH3), and guanylate kinase-like domains. The PDZ domain binds to the C terminus of its proposed natural ligand, CXXC repeat–containing interactor of PDZ3 domain (CRIPT), and results from previous experiments using only the isolated PDZ domain are consistent with the simplest scenario for a protein–protein interaction; namely, a two-state mechanism. Here we analyzed the binding kinetics of the PSG supramodule with CRIPT. We show that PSG binds CRIPT via a more complex mechanism involving two conformational states interconverting on the second timescale. Both conformational states bound a CRIPT peptide with similar affinities but with different rates, and the distribution of the two conformational states was slightly shifted upon CRIPT binding. Our results are consistent with recent structural findings of conformational changes in PSD-95 and demonstrate how conformational transitions in supertertiary structures can shape the ligand-binding energy landscape and modulate protein–protein interactions.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Ki-Seo Yoo ◽  
Kina Lee ◽  
Jun-Young Oh ◽  
Hyoeun Lee ◽  
Hyungju Park ◽  
...  

AbstractPostsynaptic density protein 95 (PSD-95) is a pivotal postsynaptic scaffolding protein in excitatory neurons. Although the transport and regulation of PSD-95 in synaptic regions is well understood, dendritic transport of PSD-95 before synaptic localization still remains to be clarified. To evaluate the role of KIF5, conventional kinesin, in the dendritic transport of PSD-95 protein, we expressed a transport defective form of KIF5A (ΔMD) that does not contain the N-terminal motor domain. Expression of ΔMD significantly decreased PSD-95 level in the dendrites. Consistently, KIF5 was associated with PSD-95 in in vitro and in vivo assays. This interaction was mediated by the C-terminal tail regions of KIF5A and the third PDZ domain of PSD-95. Additionally, the ADPDZ3 (the association domain of NMDA receptor and PDZ3 domain) expression significantly reduced the levels of PSD-95, glutamate receptor 1 (GluA1) in dendrites. The association between PSD-95 and KIF5A was dose-dependent on Staufen protein, suggesting that the Staufen plays a role as a regulatory role in the association. Taken together, our data suggest a new mechanism for dendritic transport of the AMPA receptor-PSD-95.


IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S346-S347
Author(s):  
Bret Sanders ◽  
Tom Steward ◽  
Daniel Whitcomb ◽  
Andrew Pocklington ◽  
Eunju Jenny Shin

IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S296-S297
Author(s):  
Ki-Seo Yoo ◽  
Kina Lee ◽  
Hyong Kyu Kim

2019 ◽  
Vol 75 (4) ◽  
pp. 381-391 ◽  
Author(s):  
Ana Camara-Artigas ◽  
Javier Murciano-Calles ◽  
Jose C. Martínez

PDZ domains are protein–protein recognition modules that interact with other proteins through short sequences at the carboxyl terminus. These domains are structurally characterized by a conserved fold composed of six β-strands and two α-helices. The third PDZ domain of the neuronal postsynaptic density protein 95 has an additional α-helix (α3), the role of which is not well known. In previous structures, a succinimide was identified in the β2–β3 loop instead of Asp332. The presence of this modified residue results in conformational changes in α3. In this work, crystallographic structures of the following have been solved: a truncated form of the third PDZ domain of the neuronal postsynaptic density protein 95 from which α3 has been removed, D332P and D332G variants of the protein, and a new crystal form of this domain showing the binding of Asp332 to the carboxylate-binding site of a symmetry-related molecule. Crystals of the wild type and variants were obtained in different space groups, which reflects the conformational plasticity of the domain. Indeed, the overall analysis of these structures suggests that the conformation of the β2–β3 loop is correlated with the fold acquired by α3. The alternate conformation of the β2–β3 loop affects the electrostatics of the carboxylate-binding site and might modulate the binding of different PDZ-binding motifs.


2019 ◽  
Vol 116 (3) ◽  
pp. 188a-189a
Author(s):  
George L. Hamilton ◽  
Jakub Kubiak ◽  
Claus A.M. Seidel ◽  
Hugo Sanabria

Sign in / Sign up

Export Citation Format

Share Document