piecewise expanding maps
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
pp. 1-37
Author(s):  
WAEL BAHSOUN ◽  
CARLANGELO LIVERANI

Abstract Given any smooth Anosov map, we construct a Banach space on which the associated transfer operator is quasi-compact. The peculiarity of such a space is that, in the case of expanding maps, it reduces exactly to the usual space of functions of bounded variation which has proved to be particularly successful in studying the statistical properties of piecewise expanding maps. Our approach is based on a new method of studying the absolute continuity of foliations, which provides new information that could prove useful in treating hyperbolic systems with singularities.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Peyman Eslami

<p style='text-indent:20px;'>We construct inducing schemes for general multi-dimensional piecewise expanding maps where the base transformation is Gibbs-Markov and the return times have exponential tails. Such structures are a crucial tool in proving statistical properties of dynamical systems with some hyperbolicity. As an application we check the conditions for the first return map of a class of multi-dimensional non-Markov, non-conformal intermittent maps.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Magnus Aspenberg ◽  
Viviane Baladi ◽  
Juho Leppänen ◽  
Tomas Persson

<p style='text-indent:20px;'>We associate to a perturbation <inline-formula><tex-math id="M1">\begin{document}$ (f_t) $\end{document}</tex-math></inline-formula> of a (stably mixing) piecewise expanding unimodal map <inline-formula><tex-math id="M2">\begin{document}$ f_0 $\end{document}</tex-math></inline-formula> a two-variable fractional susceptibility function <inline-formula><tex-math id="M3">\begin{document}$ \Psi_\phi(\eta, z) $\end{document}</tex-math></inline-formula>, depending also on a bounded observable <inline-formula><tex-math id="M4">\begin{document}$ \phi $\end{document}</tex-math></inline-formula>. For fixed <inline-formula><tex-math id="M5">\begin{document}$ \eta \in (0,1) $\end{document}</tex-math></inline-formula>, we show that the function <inline-formula><tex-math id="M6">\begin{document}$ \Psi_\phi(\eta, z) $\end{document}</tex-math></inline-formula> is holomorphic in a disc <inline-formula><tex-math id="M7">\begin{document}$ D_\eta\subset \mathbb{C} $\end{document}</tex-math></inline-formula> centered at zero of radius <inline-formula><tex-math id="M8">\begin{document}$ &gt;1 $\end{document}</tex-math></inline-formula>, and that <inline-formula><tex-math id="M9">\begin{document}$ \Psi_\phi(\eta, 1) $\end{document}</tex-math></inline-formula> is the Marchaud fractional derivative of order <inline-formula><tex-math id="M10">\begin{document}$ \eta $\end{document}</tex-math></inline-formula> of the function <inline-formula><tex-math id="M11">\begin{document}$ t\mapsto \mathcal{R}_\phi(t): = \int \phi(x)\, d\mu_t $\end{document}</tex-math></inline-formula>, at <inline-formula><tex-math id="M12">\begin{document}$ t = 0 $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M13">\begin{document}$ \mu_t $\end{document}</tex-math></inline-formula> is the unique absolutely continuous invariant probability measure of <inline-formula><tex-math id="M14">\begin{document}$ f_t $\end{document}</tex-math></inline-formula>. In addition, we show that <inline-formula><tex-math id="M15">\begin{document}$ \Psi_\phi(\eta, z) $\end{document}</tex-math></inline-formula> admits a holomorphic extension to the domain <inline-formula><tex-math id="M16">\begin{document}$ \{\, (\eta, z) \in \mathbb{C}^2\mid 0&lt;\Re \eta &lt;1, \, z \in D_\eta \,\} $\end{document}</tex-math></inline-formula>. Finally, if the perturbation <inline-formula><tex-math id="M17">\begin{document}$ (f_t) $\end{document}</tex-math></inline-formula> is horizontal, we prove that <inline-formula><tex-math id="M18">\begin{document}$ \lim_{\eta \in (0,1), \eta \to 1}\Psi_\phi(\eta, 1) = \partial_t \mathcal{R}_\phi(t)|_{t = 0} $\end{document}</tex-math></inline-formula>.</p>


2021 ◽  
Vol 182 (1) ◽  
Author(s):  
Gianluigi Del Magno ◽  
João Lopes Dias ◽  
Pedro Duarte ◽  
José Pedro Gaivão

2019 ◽  
Vol 20 (02) ◽  
pp. 2050009 ◽  
Author(s):  
Gianluigi Del Magno ◽  
João Lopes Dias ◽  
Pedro Duarte ◽  
José Pedro Gaivão

We consider piecewise expanding maps of the interval with finitely many branches of monotonicity and show that they are generically combinatorially stable, i.e. the number of ergodic attractors and their corresponding mixing components do not change under small perturbations of the map. Our methods provide a topological description of the attractor and give an elementary proof of the density of periodic orbits.


Nonlinearity ◽  
2018 ◽  
Vol 31 (5) ◽  
pp. 2252-2280 ◽  
Author(s):  
D Dragičević ◽  
G Froyland ◽  
C González-Tokman ◽  
S Vaienti

2017 ◽  
Vol 166 (2) ◽  
pp. 265-295 ◽  
Author(s):  
MAGNUS ASPENBERG ◽  
TOMAS PERSSON

AbstractWe consider certain parametrised families of piecewise expanding maps on the interval, and estimate and sometimes calculate the Hausdorff dimension of the set of parameters for which the orbit of a fixed point has a certain shrinking target property. This generalises several similar results for β-transformations to more general non-linear families. The proofs are based on a result by Schnellmann on typicality in parametrised families.


Sign in / Sign up

Export Citation Format

Share Document