reactor accidents
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 19)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Thomas Dolan

Nuclear power is advancing slowly because of public concerns about nuclear accidents, radioactive waste, fuel supply, cost, and nuclear proliferation. The development of molten salt reactors could alleviate most of these concerns and prevent water-cooled reactor accidents like those at Three Mile Island, Chernobyl, and Fukushima. The purpose of this article is to provide information about the potential advantages and problems of molten salt reactors.


2021 ◽  
Author(s):  
Thomas Dolan

Nuclear power is advancing slowly because of public concerns about nuclear accidents, radioactive waste, fuel supply, cost, and nuclear proliferation. The development of molten salt reactors could alleviate most of these concerns and prevent water-cooled reactor accidents like those at Three Mile Island, Chernobyl, and Fukushima. The purpose of this article is to provide information about the potential advantages and problems of molten salt reactors.


2021 ◽  
Author(s):  
Thomas Dolan

<p><br></p> <div> <table> <tr> <td> <p>Molten Salt Reactors</p> </td> </tr> </table> </div> <br> <div> <table> <tr> <td> <p>© Thomas J. Dolan, Member, IEEE 2021</p> </td> </tr> </table> </div> <br> <p><i>Abstract</i>— Nuclear power is advancing slowly because of public concerns about nuclear accidents, radioactive waste, fuel supply, cost, and nuclear proliferation. The development of molten salt reactors could alleviate most of these concerns and prevent water-cooled reactor accidents like those at Three Mile Island, Chernobyl, and Fukushima. The purpose of this article is to provide information about the potential advantages and problems of molten salt reactors. The coolants could be either <i>fluorides</i> or <i>chlorides</i>, operated above their melting temperatures, to avoid solidification, and well below their boiling temperatures, to prevent evaporation losses. “Fast” reactors use energetic fission neutrons, while “thermal” reactors use graphite to slow the neutrons down to thermal energies. We describe four reactor types: solid fuel thermal, liquid fuel thermal, liquid fuel fast, and “stable salt” fast reactors (liquid fuel in tubes). We discuss load following, reactor design projects, and development problems. Liquid fuel reactors will require a chemical processing plant to adjust fissile fuel inventory, fission products, actinides, and corrosivity in a hot, highly-radioactive environment. </p>


2021 ◽  
Author(s):  
Thomas Dolan

<p><br></p> <div> <table> <tr> <td> <p>Molten Salt Reactors</p> </td> </tr> </table> </div> <br> <div> <table> <tr> <td> <p>© Thomas J. Dolan, Member, IEEE 2021</p> </td> </tr> </table> </div> <br> <p><i>Abstract</i>— Nuclear power is advancing slowly because of public concerns about nuclear accidents, radioactive waste, fuel supply, cost, and nuclear proliferation. The development of molten salt reactors could alleviate most of these concerns and prevent water-cooled reactor accidents like those at Three Mile Island, Chernobyl, and Fukushima. The purpose of this article is to provide information about the potential advantages and problems of molten salt reactors. The coolants could be either <i>fluorides</i> or <i>chlorides</i>, operated above their melting temperatures, to avoid solidification, and well below their boiling temperatures, to prevent evaporation losses. “Fast” reactors use energetic fission neutrons, while “thermal” reactors use graphite to slow the neutrons down to thermal energies. We describe four reactor types: solid fuel thermal, liquid fuel thermal, liquid fuel fast, and “stable salt” fast reactors (liquid fuel in tubes). We discuss load following, reactor design projects, and development problems. Liquid fuel reactors will require a chemical processing plant to adjust fissile fuel inventory, fission products, actinides, and corrosivity in a hot, highly-radioactive environment. </p>


Author(s):  
Ian R. Beattie ◽  
Peter J. Jones ◽  
Brian R. Bowsher ◽  
Alan L. Nichols ◽  
Paul E. Potter ◽  
...  

2020 ◽  
Vol 148 ◽  
pp. 107683
Author(s):  
J. Stuart Bell ◽  
Raymond S. Dickson ◽  
Jeffrey Sheedy ◽  
Randy T. Peplinskie ◽  
Mark D. Gauthier ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiang Yu ◽  
Haifeng Gu ◽  
Weikai Yin ◽  
Qingyang Sun

When nuclear reactor accidents such as steam generator pipe ruptures or core melting occur, radioactive aerosols will remain in the liquid pools. Bubbles may be generated by boiling or gas injection. Film droplets produced by bubble bursts may entrain radioactive aerosols from the liquid to the air. This long-lasting behavior can produce a considerable amount of aerosols. To evaluate radioactive source terms, many physical quantities related to bubble bursting need to be determined, such as bubble burst position, bubble lifetime, cap film roll-up velocity, and cap film thickness, which are very important parameters that influence the releasing of radioactive aerosols. In this research, the phenomenon of bubble bursting was investigated by visualization. The above parameters were measured. We obtained the lifetime distribution of bubbles under different conditions, and we found that the addition of an aerosol increased the lifetime of the bubbles. By comparing the bubble lifetime to the roll-up velocity and cap thickness, we showed that the increase of the liquid temperature thickened the cap at rupture and the increase of the air temperature thinned the cap. The addition of an aerosol increased the film roll-up velocity.


Sign in / Sign up

Export Citation Format

Share Document