nutritional virulence
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 17 (8) ◽  
pp. e1009869
Author(s):  
Hunter W. Kuhn ◽  
Amanda G. Lasseter ◽  
Philip P. Adams ◽  
Carlos Flores Avile ◽  
Brandee L. Stone ◽  
...  

The Lyme disease spirochete Borrelia burgdorferi relies on uptake of essential nutrients from its host environments for survival and infection. Therefore, nutrient acquisition mechanisms constitute key virulence properties of the pathogen, yet these mechanisms remain largely unknown. In vivo expression technology applied to B. burgdorferi (BbIVET) during mammalian infection identified gene bb0562, which encodes a hypothetical protein compromised of a conserved domain of unknown function, DUF3996. DUF3996 is also found across adjacent encoded hypothetical proteins BB0563 and BB0564, suggesting the possibility that the three proteins could be functionally related. Deletion of bb0562, bb0563 and bb0564 individually and together demonstrated that bb0562 alone was important for optimal disseminated infection in immunocompetent and immunocompromised mice by needle inoculation and tick bite transmission. Moreover, bb0562 promoted spirochete survival during the blood dissemination phase of infection. Gene bb0562 was also found to be important for spirochete growth in low serum media and the growth defect of Δbb0562 B. burgdorferi was rescued with the addition of various long chain fatty acids, particularly oleic acid. In mammals, fatty acids are primarily stored in fat droplets in the form of triglycerides. Strikingly, addition of glyceryl trioleate, the triglyceride form of oleic acid, to the low serum media did not rescue the growth defect of the mutant, suggesting bb0562 may be important for the release of fatty acids from triglycerides. Therefore, we searched for and identified two canonical GXSXG lipase motifs within BB0562, despite the lack of homology to known bacterial lipases. Purified BB0562 demonstrated lipolytic activity dependent on the catalytic serine residues within the two motifs. In sum, we have established that bb0562 is a novel nutritional virulence determinant, encoding a lipase that contributes to fatty acid scavenge for spirochete survival in environments deficient in free fatty acids including the mammalian host.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 469
Author(s):  
Raquel Burin ◽  
Devendra H. Shah

Non-typhoidal Salmonella ingeniously scavenges energy for growth from tyramine (TYR) and d-glucuronic acid (DGA), both of which occur in the host as the metabolic byproducts of the gut microbial metabolism. A critical first step in energy scavenging from TYR and DGA in Salmonella involves TYR-oxidation via TYR-oxidoreductase and production of free-DGA via β-glucuronidase (GUS)-mediated hydrolysis of d-glucuronides (conjugated form of DGA), respectively. Here, we report that Salmonella utilizes TYR and DGA as sole sources of energy in a serotype-independent manner. Using colorimetric and radiometric approaches, we report that genes SEN2971, SEN3065, and SEN2426 encode TYR-oxidoreductases. Some Salmonella serotypes produce GUS, thus can also scavenge energy from d-glucuronides. We repurposed phenelzine (monoaminoxidase-inhibitor) and amoxapine (GUS-inhibitor) to inhibit the TYR-oxidoreductases and GUS encoded by Salmonella, respectively. We show that phenelzine significantly inhibits the growth of Salmonella by inhibiting TYR-oxidoreductases SEN2971, SEN3065, and SEN2426. Similarly, amoxapine significantly inhibits the growth of Salmonella by inhibiting GUS-mediated hydrolysis of d-glucuronides. Because TYR and DGA serve as potential energy sources for Salmonella growth in vivo, the data and the novel approaches used here provides a better understanding of the role of TYR and DGA in Salmonella pathogenesis and nutritional virulence.


2015 ◽  
Vol 83 (9) ◽  
pp. 3497-3505 ◽  
Author(s):  
Megan M. Jones ◽  
Timothy F. Murphy

Moraxella catarrhaliscauses otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults. Together, these two conditions contribute to enormous morbidity and mortality worldwide. The oligopeptide permease (opp) ABC transport system is a nutritional virulence factor important for the utilization of peptides. The substrate binding protein OppA, which binds peptides for uptake, is a potential vaccine antigen, but little was known about the regulation of gene expression. The fiveoppgenesoppB,oppC,oppD,oppF, andoppAare in the same open reading frame. Sequence analysis predicted two promoters, one located upstream ofoppBand one within the intergenic region betweenoppFandoppA. We have characterized the gene cluster as an operon with two functional promoters and show that cold shock at 26°C for ≤0.5 h and the presence of a peptide substrate increase gene transcript levels. Additionally, the putative promoter upstream ofoppAcontributes to the transcription ofoppAbut is not influenced by the same environmental cues as the promoter upstream ofoppB. We conclude that temperature and nutrient availability contribute to the regulation of the Opp system, which is an important nutritional virulence factor inM. catarrhalis.


2013 ◽  
Vol 15 (6) ◽  
pp. 882-890 ◽  
Author(s):  
Yousef Abu Kwaik ◽  
Dirk Bumann

Sign in / Sign up

Export Citation Format

Share Document