climate system models
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 1)

H-INDEX

9
(FIVE YEARS 1)

2019 ◽  
Vol 132 ◽  
pp. 204-216 ◽  
Author(s):  
Nan Ding ◽  
Wei Xue ◽  
Zhenya Song ◽  
Haohuan Fu ◽  
Shiming Xu ◽  
...  

Author(s):  
Martin Claussen ◽  
Anne Dallmeyer ◽  
Jürgen Bader

There is ample evidence from palaeobotanic and palaeoclimatic reconstructions that during early and mid-Holocene between some 11,700 years (in some regions, a few thousand years earlier) and some 4200 years ago, subtropical North Africa was much more humid and greener than today. This African Humid Period (AHP) was triggered by changes in the orbital forcing, with the climatic precession as the dominant pacemaker. Climate system modeling in the 1990s revealed that orbital forcing alone cannot explain the large changes in the North African summer monsoon and subsequent ecosystem changes in the Sahara. Feedbacks between atmosphere, land surface, and ocean were shown to strongly amplify monsoon and vegetation changes. Forcing and feedbacks have caused changes far larger in amplitude and extent than experienced today in the Sahara and Sahel. Most, if not all, climate system models, however, tend to underestimate the amplitude of past African monsoon changes and the extent of the land-surface changes in the Sahara. Hence, it seems plausible that some feedback processes are not properly described, or are even missing, in the climate system models.Perhaps even more challenging than explaining the existence of the AHP and the Green Sahara is the interpretation of data that reveal an abrupt termination of the last AHP. Based on climate system modeling and theoretical considerations in the late 1990s, it was proposed that the AHP could have ended, and the Sahara could have expanded, within just a few centuries—that is, much faster than orbital forcing. In 2000, paleo records of terrestrial dust deposition off Mauritania seemingly corroborated the prediction of an abrupt termination. However, with the uncovering of more paleo data, considerable controversy has arisen over the geological evidence of abrupt climate and ecosystem changes. Some records clearly show abrupt changes in some climate and terrestrial parameters, while others do not. Also, climate system modeling provides an ambiguous picture.The prediction of abrupt climate and ecosystem changes at the end of the AHP is hampered by limitations implicit in the climate system. Because of the ubiquitous climate variability, it is extremely unlikely that individual paleo records and model simulations completely match. They could do so in a statistical sense, that is, if the statistics of a large ensemble of paleo data and of model simulations converge. Likewise, the interpretation regarding the strength of terrestrial feedback from individual records is elusive. Plant diversity, rarely captured in climate system models, can obliterate any abrupt shift between green and desert state. Hence, the strength of climate—vegetation feedback is probably not a universal property of a certain region but depends on the vegetation composition, which can change with time. Because of spatial heterogeneity of the African landscape and the African monsoon circulation, abrupt changes can occur in several, but not all, regions at different times during the transition from the humid mid-Holocene climate to the present-day more arid climate. Abrupt changes in one region can be induced by abrupt changes in other regions, a process sometimes referred to as “induced tipping.” The African monsoon system seems to be prone to fast and potentially abrupt changes, which to understand and to predict remains one of the grand challenges in African climate science.


Author(s):  
Rucong Yu ◽  
Tianjun Zhou ◽  
Tongwen Wu ◽  
Wei Xue ◽  
Guangqing Zhou

Sign in / Sign up

Export Citation Format

Share Document