pine flatwoods
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 3)

H-INDEX

17
(FIVE YEARS 0)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12534
Author(s):  
Houston C. Chandler ◽  
J. Checo Colón-Gaud ◽  
Thomas A. Gorman ◽  
Khalil Carson ◽  
Carola A. Haas

Ephemeral wetlands are commonly embedded within pine uplands of the southeastern United States. These wetlands support diverse communities but have often been degraded by a lack of growing-season fires that historically maintained the vegetation structure. In the absence of fire, wetlands develop a dense mid-story of woody vegetation that increases canopy cover and decreases the amount of herbaceous vegetation. To understand how reduced fire frequency impacts wetland processes, we measured leaf litter breakdown rates and invertebrate communities using three common plant species (Longleaf Pine (Pinus palustris), Pineland Threeawn Grass (Aristida stricta), and Black Gum (Nyssa sylvatica)) that occur in pine flatwoods wetlands located on Eglin Air Force Base, Florida. We also tested whether or not the overall habitat type within a wetland (fire maintained or fire suppressed) affected these processes. We placed leaf packs containing 15.0 g of dried leaf litter from each species in both fire-maintained and fire-suppressed sections of three wetlands, removing them after 103–104 days submerged in the wetland. The amount of leaf litter remaining at the end of the study varied across species (N. sylvatica = 7.97 ± 0.17 g, A. stricta = 11.84 ± 0.06 g, and P. palustris = 11.37 ± 0.07 g (mean ± SE)) and was greater in fire-maintained habitat (leaf type: F2,45 = 437.2, P < 0.001; habitat type: F1,45 = 4.6, P = 0.037). We identified an average of 260 ± 33.5 (SE) invertebrates per leaf pack (range: 19–1,283), and the most abundant taxonomic groups were Cladocera, Isopoda, Acariformes, and Diptera. Invertebrate relative abundance varied significantly among litter species (approximately 39.9 ± 9.4 invertebrates per gram of leaf litter remaining in N. sylvatica leaf packs, 27.2 ± 5.3 invertebrates per gram of A. stricta, and 14.6 ± 3.1 invertebrates per gram of P. palustris (mean ± SE)) but not habitat type. However, both habitat (pseudo-F1,49 = 4.30, P = 0.003) and leaf litter type (pseudo-F2,49 = 3.62, P = 0.001) had a significant effect on invertebrate community composition. Finally, this work was part of ongoing projects focusing on the conservation of the critically imperiled Reticulated Flatwoods Salamander (Ambystoma bishopi), which breeds exclusively in pine flatwoods wetlands, and we examined the results as they relate to potential prey items for larval flatwoods salamanders. Overall, our results suggest that the vegetation changes associated with a lack of growing-season fires can impact both invertebrate communities and leaf litter breakdown.


2016 ◽  
Vol 15 (3) ◽  
pp. 431-447 ◽  
Author(s):  
Kenneth J. Erwin ◽  
Houston C. Chandler ◽  
John G. Palis ◽  
Thomas A. Gorman ◽  
Carola A. Haas

Wetlands ◽  
2015 ◽  
Vol 35 (6) ◽  
pp. 1201-1211 ◽  
Author(s):  
Houston C. Chandler ◽  
Carola A. Haas ◽  
Thomas A. Gorman

2015 ◽  
Vol 24 (4) ◽  
pp. 573 ◽  
Author(s):  
Jesse K. Kreye ◽  
Leda N. Kobziar

Mastication of understorey shrubs and small trees to reduce fire hazard has become a widespread forest management practice, but few empirical studies have quantified the effects of this mechanical treatment on actual fire behaviour and fire effects at the stand scale. We conducted experimental burns in masticated pine flatwoods with palmetto/gallberry understories, a common ecosystem of the Southern US Coastal Plain. Fire behaviour (flame height, rate of spread) and fire effects were compared between treated and untreated sites burned in the typical winter prescribed burning season. Mastication effectively reduced flame heights by 66%, but recovering shrubs (cover, height) influenced fire behaviour within six months following treatment, suggesting time-limited effectiveness. Trees had less crown scorch and bole char in masticated sites, but tree mortality was minimal on both treated and untreated sites. Consumption of masticated fuel was substantial across both treatments, but little duff was consumed under the moist soil conditions. When burning is conducted soon after treatment, mastication may effectively reduce fire behaviour in pine flatwoods sites, but the duration of treatment efficacy remains unclear.


2014 ◽  
Vol 112 (5) ◽  
pp. 446-456 ◽  
Author(s):  
Don C. Bragg ◽  
Ricky O'Neill ◽  
William Holimon ◽  
Joe Fox ◽  
Gary Thornton ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document