invasion mechanisms
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 48)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Fan Jiang ◽  
Liang Liang ◽  
Jing Wang ◽  
Shuifang Zhu

AbstractBactrocera dorsalis is an invasive polyphagous pest causing considerable ecological and economic damage worldwide. We report a high-quality chromosome-level genome assembly and combine various transcriptome data to explore the molecular mechanisms of its rapid adaptation to new environments. The expansions of the DDE transposase superfamily and key gene families related to environmental adaptation and enrichment of the expanded and unique gene families in metabolism and defence response pathways explain its environmental adaptability. The relatively high but not significantly different expression of heat-shock proteins, regardless of the environmental conditions, suggests an intrinsic mechanism underlying its adaptation to high temperatures. The mitogen-activated protein kinase pathway plays a key role in adaptation to new environments. The prevalence of duplicated genes in its genome explains the diversity in the B. dorsalis complex. These findings provide insights into the genetic basis of the invasiveness and diversity of B. dorsalis, explaining its rapid adaptation and expansion.


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Xiaomei Zhang ◽  
Michael Payne ◽  
Thanh Nguyen ◽  
Sandeep Kaur ◽  
Ruiting Lan

Shigella and enteroinvasive Escherichia coli (EIEC) cause human bacillary dysentery with similar invasion mechanisms and share similar physiological, biochemical and genetic characteristics. Differentiation of Shigella from EIEC is important for clinical diagnostic and epidemiological investigations. However, phylogenetically, Shigella and EIEC strains are composed of multiple clusters and are different forms of E. coli , making it difficult to find genetic markers to discriminate between Shigella and EIEC. In this study, we identified 10 Shigella clusters, seven EIEC clusters and 53 sporadic types of EIEC by examining over 17000 publicly available Shigella and EIEC genomes. We compared Shigella and EIEC accessory genomes to identify cluster-specific gene markers for the 17 clusters and 53 sporadic types. The cluster-specific gene markers showed 99.64% accuracy and more than 97.02% specificity. In addition, we developed a freely available in silico serotyping pipeline named Shigella EIEC Cluster Enhanced Serotype Finder (ShigEiFinder) by incorporating the cluster-specific gene markers and established Shigella and EIEC serotype-specific O antigen genes and modification genes into typing. ShigEiFinder can process either paired-end Illumina sequencing reads or assembled genomes and almost perfectly differentiated Shigella from EIEC with 99.70 and 99.74% cluster assignment accuracy for the assembled genomes and read mapping respectively. ShigEiFinder was able to serotype over 59 Shigella serotypes and 22 EIEC serotypes and provided a high specificity of 99.40% for assembled genomes and 99.38% for read mapping for serotyping. The cluster-specific gene markers and our new serotyping tool, ShigEiFinder (installable package: https://github.com/LanLab/ShigEiFinder, online tool: https://mgtdb.unsw.edu.au/ShigEiFinder/), will be useful for epidemiological and diagnostic investigations.


Author(s):  
Brenda B. Daroz ◽  
Luis G. V. Fernandes ◽  
Maria F. Cavenague ◽  
Leandro T. Kochi ◽  
Felipe J. Passalia ◽  
...  

Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira spp. It is considered a neglected infectious disease of human and veterinary concern. Our group has been investigating proteins annotated as hypothetical, predicted to be located on the leptospiral surface. Because of their location, these proteins may have the ability to interact with various host components, which could allow establishment of the infection. These proteins act as adherence factors by binding to host receptor molecules, such as the extracellular matrix (ECM) components laminin and glycosaminoglycans to help bacterial colonization. Leptospira also interacts with the host fibrinolytic system, which has been demonstrated to be a powerful tool for invasion mechanisms. The interaction with fibrinogen and thrombin has been shown to reduce fibrin clot formation. Additionally, the degradation of coagulation cascade components by secreted proteases or by acquired surface plasmin could also play a role in reducing clot formation, hence facilitating dissemination during infection. Interaction with host complement system regulators also plays a role in helping bacteria to evade the immune system, facilitating invasion. Interaction of Leptospira to cell receptors, such as cadherins, can contribute to investigate molecules that participate in virulence. To achieve a better understanding of the host-pathogen interaction, leptospiral mutagenesis tools have been developed and explored. This work presents several proteins that mediate binding to components of the ECM, plasma, components of the complement system and cells, to gather research achievements that can be helpful in better understanding the mechanisms of leptospiral-host interactions and discuss genetic manipulation for Leptospira spp. aimed at protein function validation.


2021 ◽  
Author(s):  
Teerawit Audshasai ◽  
Jonathan A. Coles ◽  
Stavros Panagiotou ◽  
Shadia Khandaker ◽  
Hannah E. Scales ◽  
...  

AbstractThe entry routes and translocation mechanisms of bacterial pathogens into the central nervous system remain obscure. We report here that Streptococcus pneumoniae (Sp) or polystyrene microspheres, applied to the nose of a mouse, appeared in the meninges of the dorsal cortex within minutes. Recovery of viable bacteria from dissected tissue and fluorescence microscopy showed that up to at least 72h, Sp and microspheres were predominantly in the outer of the two meninges, the pachymeninx. No Sp were found in blood or cerebrospinal fluid. Evidence that this was not an artifact of the method of administration is that in mice infected by horizontal transmission, Sp were also predominantly in the meninges and absent from blood. Intravital imaging through the skull, and flow cytometry showed recruitment and activation of LysM+ cells in the dorsal pachymeninx at 5h and 10h following intranasal infection. Imaging of the cribriform plate suggested that both Sp and microspheres entered through its foramina via an inward flow of fluid connecting the nose to the pachymeninx. Our findings bring further insight into the invasion mechanisms of bacterial pathogens such as Sp into the central nervous system, but are also pertinent to the delivery of drugs to the brain, and the entry of air-borne particles into the cranium.


2021 ◽  
Vol 232 (3) ◽  
pp. 1184-1200
Author(s):  
Inderjit ◽  
Daniel Simberloff ◽  
Harleen Kaur ◽  
Susan Kalisz ◽  
T. Martijn Bezemer
Keyword(s):  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jia Mei ◽  
Claudia Böhland ◽  
Anika Geiger ◽  
Iris Baur ◽  
Kristina Berner ◽  
...  

Abstract Background Invasiveness is a major factor contributing to metastasis of tumour cells. Given the broad variety and plasticity of invasion mechanisms, assessing potential metastasis-promoting effects of irradiation for specific mechanisms is important for further understanding of potential adverse effects of radiotherapy. In fibroblast-led invasion mechanisms, fibroblasts produce tracks in the extracellular matrix in which cancer cells with epithelial traits can follow. So far, the influence of irradiation on this type of invasion mechanisms has not been assessed. Methods By matrix-embedding coculture spheroids consisting of breast cancer cells (MCF-7, BT474) and normal fibroblasts, we established a model for fibroblast-led invasion. To demonstrate applicability of this model, spheroid growth and invasion behaviour after irradiation with 5 Gy were investigated by microscopy and image analysis. Results When not embedded, irradiation caused a significant growth delay in the spheroids. When irradiating the spheroids with 5 Gy before embedding, we find comparable maximum migration distance in fibroblast monoculture and in coculture samples as seen in unirradiated samples. Depending on the fibroblast strain, the number of invading cells remained constant or was reduced. Conclusion In this spheroid model and with the cell lines and fibroblast strains used, irradiation does not have a major invasion-promoting effect. 3D analysis of invasiveness allows to uncouple effects on invading cell number and maximum invasion distance when assessing radiation effects.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Chen ◽  
Zhihao Wang ◽  
Yawen Wang ◽  
Yiping Li

In the past two decades, pandemics of several fatal coronaviruses have posed enormous challenges for public health, including SARS-CoV (2003), MERS-CoV (2012), and SARS-CoV-2 (2019). Among these, SARS-CoV-2 continues to ravage the world today and has lead to millions of deaths and incalculable economic damage. Till now, there is no clinically proven antiviral drug available for SARS-CoV-2. However, the bioactive molecules of natural origin, especially medicinal plants, have been proven to be potential resources in the treatment of SARS-CoV-2, acting at different stages of the viral life cycle and targeting different viral or host proteins, such as PLpro, 3CLpro, RdRp, helicase, spike, ACE2, and TMPRSS2. They provide a viable strategy to develop therapeutic agents. This review presents fundamental biological information on SARS-CoV-2, including the viral biological characteristics and invasion mechanisms. It also summarizes the reported natural bioactive molecules with anti-coronavirus properties, arranged by their different targets in the life cycle of viral infection of human cells, and discusses the prospects of these bioactive molecules for the treatment of COVID-19.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tania Aires ◽  
Tamara M. Stuij ◽  
Gerard Muyzer ◽  
Ester A. Serrão ◽  
Aschwin H. Engelen

Invasive plants, including marine macrophytes, are one of the most important threats to biodiversity by displacing native species and organisms depending on them. Invasion success is dependent on interactions among living organisms, but their study has been mostly limited to negative interactions while positive interactions are mostly underlooked. Recent studies suggested that microorganisms associated with eukaryotic hosts may play a determinant role in the invasion process. Along with the knowledge of their structure, taxonomic composition, and potential functional profile, understanding how bacterial communities are associated with the invasive species and the threatened natives (species-specific/environmentally shaped/tissue-specific) can give us a holistic insight into the invasion mechanisms. Here, we aimed to compare the bacterial communities associated with leaves and roots of two native Caribbean seagrasses (Halodule wrightii and Thalassia testudinum) with those of the successful invader Halophila stipulacea, in the Caribbean island Curaçao, using 16S rRNA gene amplicon sequencing and functional prediction. Invasive seagrass microbiomes were more diverse and included three times more species-specific core OTUs than the natives. Associated bacterial communities were seagrass-specific, with higher similarities between natives than between invasive and native seagrasses for both communities associated with leaves and roots, despite their strong tissue differentiation. However, with a higher number of OTUs in common, the core community (i.e., OTUs occurring in at least 80% of the samples) of the native H. wrightii was more similar to that of the invader H. stipulacea than T. testudinum, which could reflect more similar essential needs (e.g., nutritional, adaptive, and physiological) between native and invasive, in contrast to the two natives that might share more environment-related OTUs. Relative to native seagrass species, the invasive H. stipulacea was enriched in halotolerant bacterial genera with plant growth-promoting properties (like Halomonas sp. and Lysinibacillus sp.) and other potential beneficial effects for hosts (e.g., heavy metal detoxifiers and quorum sensing inhibitors). Predicted functional profiles also revealed some advantageous traits on the invasive species such as detoxification pathways, protection against pathogens, and stress tolerance. Despite the predictive nature of our findings concerning the functional potential of the bacteria, this investigation provides novel and important insights into native vs. invasive seagrasses microbiome. We demonstrated that the bacterial community associated with the invasive seagrass H. stipulacea is different from native seagrasses, including some potentially beneficial bacteria, suggesting the importance of considering the microbiome dynamics as a possible and important influencing factor in the colonization of non-indigenous species. We suggest further comparison of H. stipulacea microbiome from its native range with that from both the Mediterranean and Caribbean habitats where this species has a contrasting invasion success. Also, our new findings open doors to a more in-depth investigation combining meta-omics with bacterial manipulation experiments in order to confirm any functional advantage in the microbiome of this invasive seagrass.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Vivian Monzon ◽  
Aleix Lafita ◽  
Alex Bateman

Abstract Background Fibrillar adhesins are long multidomain proteins that form filamentous structures at the cell surface of bacteria. They are an important yet understudied class of proteins composed of adhesive and stalk domains that mediate interactions of bacteria with their environment. This study aims to characterize fibrillar adhesins in a wide range of bacterial phyla and to identify new fibrillar adhesin-like proteins to improve our understanding of host-bacteria interactions. Results Through careful literature and computational searches, we identified 82 stalk and 27 adhesive domain families in fibrillar adhesins. Based on the presence of these domains in the UniProt Reference Proteomes database, we identified and analysed 3,542 fibrillar adhesin-like proteins across species of the most common bacterial phyla. We further enumerate the adhesive and stalk domain combinations found in nature and demonstrate that fibrillar adhesins have complex and variable domain architectures, which differ across species. By analysing the domain architecture of fibrillar adhesins, we show that in Gram positive bacteria, adhesive domains are mostly positioned at the N-terminus and cell surface anchors at the C-terminus of the protein, while their positions are more variable in Gram negative bacteria. We provide an open repository of fibrillar adhesin-like proteins and domains to enable further studies of this class of bacterial surface proteins. Conclusion This study provides a domain-based characterization of fibrillar adhesins and demonstrates that they are widely found in species across the main bacterial phyla. We have discovered numerous novel fibrillar adhesins and improved our understanding of pathogenic adhesion and invasion mechanisms.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 889
Author(s):  
Jing Wen Hang ◽  
Farhana Tukijan ◽  
Erica Lee ◽  
Shifana Abdeen ◽  
Yaw Aniweh ◽  
...  

Malaria, which is caused by Plasmodium parasites through Anopheles mosquito transmission, remains one of the most life-threatening diseases affecting hundreds of millions of people worldwide every year. Plasmodium vivax, which accounts for the majority of cases of recurring malaria caused by the Plasmodium (non-Laverania) subgenus, is an ancient and continuing zoonosis originating from monkey hosts probably outside Africa. The emergence of other zoonotic malarias (P. knowlesi, P. cynomolgi, and P. simium) further highlights the seriousness of the disease. The severity of this epidemic disease is dependent on many factors, including the parasite characteristics, host-parasite interactions, and the pathology of the infection. Successful infection depends on the ability of the parasite to invade the host; however, little is known about the parasite invasion biology and mechanisms. The lack of this information adds to the challenges to malaria control and elimination, hence enhancing the potential for continuation of this zoonosis. Here, we review the literature describing the characteristics, distribution, and genome details of the parasites, as well as host specificity, host-parasite interactions, and parasite pathology. This information will provide the basis of a greater understanding of the epidemiology and pathogenesis of malaria to support future development of strategies for the control and prevention of this zoonotic infection.


Sign in / Sign up

Export Citation Format

Share Document