Emotion and Word Recognition for Unprocessed and Vocoded Speech Stimuli

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Shae D. Morgan ◽  
Stacy Garrard ◽  
Tiffany Hoskins
2018 ◽  
Vol 61 (1) ◽  
pp. 145-158 ◽  
Author(s):  
Chhayakanta Patro ◽  
Lisa Lucks Mendel

PurposeThe main goal of this study was to investigate the minimum amount of sensory information required to recognize spoken words (isolation points [IPs]) in listeners with cochlear implants (CIs) and investigate facilitative effects of semantic contexts on the IPs.MethodListeners with CIs as well as those with normal hearing (NH) participated in the study. In Experiment 1, the CI users listened to unprocessed (full-spectrum) stimuli and individuals with NH listened to full-spectrum or vocoder processed speech. IPs were determined for both groups who listened to gated consonant-nucleus-consonant words that were selected based on lexical properties. In Experiment 2, the role of semantic context on IPs was evaluated. Target stimuli were chosen from the Revised Speech Perception in Noise corpus based on the lexical properties of the final words.ResultsThe results indicated that spectrotemporal degradations impacted IPs for gated words adversely, and CI users as well as participants with NH listening to vocoded speech had longer IPs than participants with NH who listened to full-spectrum speech. In addition, there was a clear disadvantage due to lack of semantic context in all groups regardless of the spectral composition of the target speech (full spectrum or vocoded). Finally, we showed that CI users (and users with NH with vocoded speech) can overcome such word processing difficulties with the help of semantic context and perform as well as listeners with NH.ConclusionWord recognition occurs even before the entire word is heard because listeners with NH associate an acoustic input with its mental representation to understand speech. The results of this study provide insight into the role of spectral degradation on the processing of spoken words in isolation and the potential benefits of semantic context. These results may also explain why CI users rely substantially on semantic context.


2012 ◽  
Vol 25 (0) ◽  
pp. 157
Author(s):  
Mika Sato ◽  
Tetsuaki Kawase ◽  
Shuichi Sakamoto ◽  
Yôiti Suzuki ◽  
Toshimitsu Kobayashi

Artificial auditory devices such as cochlear implants (CIs) and auditory brainstem implants (ABIs) have become standard means to manage profound sensorineural hearing loss. However, because of their structural limitations compared to the cochlea and the cochlear nucleus, the generated auditory sensations are still imperfect. Recipients need postoperative auditory rehabilitation. To improve these rehabilitation programs, this study evaluated the effects of bimodal (audio–visual) training under seven experimental conditions of distorted speech sound, named noise-vocoded speech sound (NVSS), which is similarly processed with a speech processor of CI/ABI. Word intelligibilities under the seven conditions of two-band noise-vocoded speech were measured for auditory (A), visual (V) and auditory–visual (AV) modalities after a few hours of bimodal (AV) training. The experiment was performed with 56 subjects with normal hearing. Performance of A and AV word recognition was significantly different under the seven auditory conditions. The V word intelligibility was not influenced by the condition of combined auditory cues. However, V word intelligibility was correlated with AV word recognition under all frequency conditions. Correlation between A and AV word intelligibilities was ambiguous. These findings suggest the importance of visual cues in AV speech perception under extremely degraded auditory conditions, and underscore the importance of the possible effectiveness of bimodal audio–visual training in postoperative rehabilitation for patients with postlingual deafness who have undergone artificial auditory device implantation.


2018 ◽  
Vol 143 (3) ◽  
pp. 1407-1416 ◽  
Author(s):  
Toros Ufuk Senan ◽  
Sam Jelfs ◽  
Armin Kohlrausch

2018 ◽  
Vol 61 (7) ◽  
pp. 1807-1814 ◽  
Author(s):  
Heather L. Porter ◽  
Emily R. Spitzer ◽  
Emily Buss ◽  
Lori J. Leibold ◽  
John H. Grose

Purpose This experiment sought to determine whether children's increased susceptibility to nonsimultaneous masking, particularly backward masking, is evident for speech stimuli. Method Five- to 9-year-olds and adults with normal hearing heard nonsense consonant–vowel–consonant targets. In Experiments 1 and 2, those targets were presented between two 250-ms segments of 70-dB-SPL speech-shaped noise, at either −30 dB signal-to-noise ratio (Experiment 1) or at the listener's word recognition threshold (Experiment 2). In Experiment 3, the target was presented in steady speech-shaped noise at listener threshold. For all experiments, percent correct was estimated for initial and final consonants. Results In the nonsimultaneous noise conditions, child–adult differences were larger for the final consonant than the initial consonant whether listeners were tested at −30 dB signal-to-noise ratio (Experiment 1) or at their individual word recognition threshold (Experiment 2). Children were not particularly susceptible to backward masking relative to adults when tested in a steady masker (Experiment 3). Conclusions Child–adult differences were greater for backward than forward masking for speech in a nonsimultaneous noise masker, as observed in previous psychophysical studies using tonal stimuli. Children's greater susceptibility to nonsimultaneous masking, and backward masking in particular, could play a role in their limited ability to benefit from masker envelope modulation when recognizing masked speech.


Author(s):  
Faizah Mushtaq ◽  
Ian M. Wiggins ◽  
Pádraig T. Kitterick ◽  
Carly A. Anderson ◽  
Douglas E. H. Hartley

AbstractWhilst functional neuroimaging has been used to investigate cortical processing of degraded speech in adults, much less is known about how these signals are processed in children. An enhanced understanding of cortical correlates of poor speech perception in children would be highly valuable to oral communication applications, including hearing devices. We utilised vocoded speech stimuli to investigate brain responses to degraded speech in 29 normally hearing children aged 6–12 years. Intelligibility of the speech stimuli was altered in two ways by (i) reducing the number of spectral channels and (ii) reducing the amplitude modulation depth of the signal. A total of five different noise-vocoded conditions (with zero, partial or high intelligibility) were presented in an event-related format whilst participants underwent functional near-infrared spectroscopy (fNIRS) neuroimaging. Participants completed a word recognition task during imaging, as well as a separate behavioural speech perception assessment. fNIRS recordings revealed statistically significant sensitivity to stimulus intelligibility across several brain regions. More intelligible stimuli elicited stronger responses in temporal regions, predominantly within the left hemisphere, while right inferior parietal regions showed an opposite, negative relationship. Although there was some evidence that partially intelligible stimuli elicited the strongest responses in the left inferior frontal cortex, a region previous studies have suggested is associated with effortful listening in adults, this effect did not reach statistical significance. These results further our understanding of cortical mechanisms underlying successful speech perception in children. Furthermore, fNIRS holds promise as a clinical technique to help assess speech intelligibility in paediatric populations.


1996 ◽  
Vol 5 (1) ◽  
pp. 67-78 ◽  
Author(s):  
Kenyatta O. Rivers ◽  
Linda J. Lombardino ◽  
Cynthia K. Thompson

The effects of training in letter-sound correspondences and phonemic decoding (segmenting and blending skills) on three kindergartners' word recognition abilities were examined using a single-subject multiple-baseline design across behaviors and subjects. Whereas CVC pseudowords were trained, generalization to untrained CVC pseudowords, untrained CVC real words, untrained CV and VC pseudowords, and untrained CV and VC real words were assessed. Generalization occurred to all of the untrained constructions for two of the three subjects. The third subject did not show the same degree of generalization to VC pseudowords and real words; however, after three training sessions, this subject read all VC constructions with 100% accuracy. Findings are consistent with group training studies that have shown the benefits of decoding training on word recognition and spelling skills and with studies that have demonstrated the effects of generalization to less complex structures when more complex structures are trained.


Author(s):  
Martin Chavant ◽  
Alexis Hervais-Adelman ◽  
Olivier Macherey

Purpose An increasing number of individuals with residual or even normal contralateral hearing are being considered for cochlear implantation. It remains unknown whether the presence of contralateral hearing is beneficial or detrimental to their perceptual learning of cochlear implant (CI)–processed speech. The aim of this experiment was to provide a first insight into this question using acoustic simulations of CI processing. Method Sixty normal-hearing listeners took part in an auditory perceptual learning experiment. Each subject was randomly assigned to one of three groups of 20 referred to as NORMAL, LOWPASS, and NOTHING. The experiment consisted of two test phases separated by a training phase. In the test phases, all subjects were tested on recognition of monosyllabic words passed through a six-channel “PSHC” vocoder presented to a single ear. In the training phase, which consisted of listening to a 25-min audio book, all subjects were also presented with the same vocoded speech in one ear but the signal they received in their other ear differed across groups. The NORMAL group was presented with the unprocessed speech signal, the LOWPASS group with a low-pass filtered version of the speech signal, and the NOTHING group with no sound at all. Results The improvement in speech scores following training was significantly smaller for the NORMAL than for the LOWPASS and NOTHING groups. Conclusions This study suggests that the presentation of normal speech in the contralateral ear reduces or slows down perceptual learning of vocoded speech but that an unintelligible low-pass filtered contralateral signal does not have this effect. Potential implications for the rehabilitation of CI patients with partial or full contralateral hearing are discussed.


1998 ◽  
Vol 41 (3) ◽  
pp. 538-548 ◽  
Author(s):  
Sean C. Huckins ◽  
Christopher W. Turner ◽  
Karen A. Doherty ◽  
Michael M. Fonte ◽  
Nikolaus M. Szeverenyi

Functional Magnetic Resonance Imaging (fMRI) holds exciting potential as a research and clinical tool for exploring the human auditory system. This noninvasive technique allows the measurement of discrete changes in cerebral cortical blood flow in response to sensory stimuli, allowing determination of precise neuroanatomical locations of the underlying brain parenchymal activity. Application of fMRI in auditory research, however, has been limited. One problem is that fMRI utilizing echo-planar imaging technology (EPI) generates intense noise that could potentially affect the results of auditory experiments. Also, issues relating to the reliability of fMRI for listeners with normal hearing need to be resolved before this technique can be used to study listeners with hearing loss. This preliminary study examines the feasibility of using fMRI in auditory research by performing a simple set of experiments to test the reliability of scanning parameters that use a high resolution and high signal-to-noise ratio unlike that presently reported in the literature. We used consonant-vowel (CV) speech stimuli to investigate whether or not we could observe reproducible and consistent changes in cortical blood flow in listeners during a single scanning session, across more than one scanning session, and in more than one listener. In addition, we wanted to determine if there were differences between CV speech and nonspeech complex stimuli across listeners. Our study shows reproducibility within and across listeners for CV speech stimuli. Results were reproducible for CV speech stimuli within fMRI scanning sessions for 5 out of 9 listeners and were reproducible for 6 out of 8 listeners across fMRI scanning sessions. Results of nonspeech complex stimuli across listeners showed activity in 4 out of 9 individuals tested.


Sign in / Sign up

Export Citation Format

Share Document