succinyl coa synthetase
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 8)

H-INDEX

20
(FIVE YEARS 0)

Author(s):  
Bo Zhang ◽  
Christopher Lingga ◽  
Courtney Bowman ◽  
Timothy J. Hackmann

Many bacteria and other organisms carry out fermentations forming acetate. These fermentations have broad importance to foods, agriculture, and industry. They also are important to bacteria themselves because they often generate ATP. Here we found a biochemical pathway for forming acetate and synthesizing ATP that was unknown in fermentative bacteria. We found the bacterium Cutibacterium granulosum formed acetate during fermentation of glucose. It did not use phosphotransacetylase or acetate kinase, enzymes found in nearly all acetate-forming bacteria. Instead, it used a pathway involving two different enzymes. The first enzyme, succinyl-CoA:acetate CoA-transferase (SCACT), forms acetate from acetyl-CoA. The second enzyme, succinyl-CoA synthetase (SCS), synthesizes ATP. We identified the genes encoding these enzymes, and they were homologs of SCACT and SCS genes found in other bacteria. The pathway resembles one described in eukaryotes, but it uses bacterial, not eukaryotic, gene homologs. To find other instances of the pathway, we analyzed sequences of all biochemically-characterized homologs of SCACT and SCS (103 enzymes from 64 publications). Homologs with similar enzymatic activity had similar sequences, enabling a large-scale search for them in genomes. We searched nearly 600 genomes of bacteria known to form acetate, and we found 6% encoded homologs with SCACT and SCS activity. This included >30 species belonging to 5 different phyla, showing a diverse range of bacteria encode the SCACT/SCS pathway. This work suggests the SCACT/SCS pathway is important to forming acetate in many branches of the tree of life. Importance Pathways for forming acetate during fermentation have been studied for over 80 years. In that time, several pathways have been described in a range of organisms, from bacteria to animals. However, one pathway (involving succinyl-CoA:acetate CoA-transferase and succinyl-CoA synthetase) has not been reported in prokaryotes. Here we discovered enzymes for this pathway in the fermentative bacterium Cutibacterium granulosum. We also found >30 other fermentative bacteria that encode this pathway, demonstrating it could be common. This pathway represents a new way for bacteria to form acetate from acetyl-CoA and synthesize ATP via substrate-level phosphorylation. It could be a target for controlling yield of acetate during fermentation, with relevance to foods, agriculture, and industry.


2021 ◽  
Vol 77 (3) ◽  
pp. 357-368
Author(s):  
Ji Huang ◽  
Marie E. Fraser

Succinyl-CoA synthetase (SCS) catalyzes a reversible reaction that is the only substrate-level phosphorylation in the citric acid cycle. One of the essential steps for the transfer of the phosphoryl group involves the movement of the phosphohistidine loop between active site I, where CoA, succinate and phosphate bind, and active site II, where the nucleotide binds. Here, the first crystal structure of SCS revealing the conformation of the phosphohistidine loop in site II of the porcine GTP-specific enzyme is presented. The phosphoryl transfer bridges a distance of 29 Å between the binding sites for phosphohistidine in site I and site II, so these crystal structures support the proposed mechanism of catalysis by SCS. In addition, a second succinate-binding site was discovered at the interface between the α- and β-subunits of SCS, and another magnesium ion was found that interacts with the side chains of Glu141β and Glu204β via water-mediated interactions. These glutamate residues interact with the active-site histidine residue when it is bound in site II.


2020 ◽  
Vol 87 (2) ◽  
Author(s):  
Toshiyuki Ueki

ABSTRACT Growth of Geobacter sulfurreducens PCA on lactate was enhanced by laboratory adaptive evolution. The enhanced growth was considered to be attributed to increased expression of the sucCD genes, encoding a succinyl-coenzyme A (CoA) synthetase. To further investigate the function of the succinyl-CoA synthetase, the sucCD genes were deleted from G. sulfurreducens. The mutant showed defective growth on lactate but not on acetate. Introduction of the sucCD genes into the mutant restored the full potential to grow on lactate. These results verify the importance of the succinyl-CoA synthetase in growth on lactate. Genome analysis of Geobacter species identified candidate genes, GSU1623, GSU1624, and GSU1620, for lactate dehydrogenase. Deletion mutants of the identified genes for d-lactate dehydrogenase (ΔGSU1623 ΔGSU1624 mutant) or l-lactate dehydrogenase (ΔGSU1620 mutant) could not grow on d-lactate or l-lactate but could grow on acetate and l- or d-lactate, respectively. Introduction of the respective genes into the mutants allowed growth on the corresponding lactate stereoisomer. These results suggest that the identified genes were essential for d- or l-lactate utilization. The lacZ reporter assay demonstrated that the putative promoter regions were more active during growth on lactate than during growth on acetate, indicating that the genes for the lactate dehydrogenases were expressed more during growth on lactate than during growth on acetate. The gene deletion phenotypes and the expression profiles indicate that there are metabolic switches between lactate and acetate. This study advances the understanding of anaerobic lactate utilization in G. sulfurreducens. IMPORTANCE Lactate is a microbial fermentation product as well as a source of carbon and electrons for microorganisms in the environment. Furthermore, lactate is a common amendment for stimulation of microbial growth in environmental biotechnology applications. However, anaerobic metabolism of lactate has been poorly studied for environmentally relevant microorganisms. Geobacter species are found in various environments and environmental biotechnology applications. By employing genomic and genetic approaches, succinyl-CoA synthetase and lactate dehydrogenase were identified as key enzymes in anaerobic metabolism of lactate in Geobacter sulfurreducens, a representative Geobacter species. Differential gene expression during growth on lactate and acetate was observed, demonstrating that G. sulfurreducens could metabolically switch to adapt to available substrates in the environment. The findings provide new insights into basic physiology in lactate metabolism as well as cellular responses to growth conditions in the environment and can be informative for the application of lactate in environmental biotechnology.


Author(s):  
Ji Huang ◽  
Marie E. Fraser

Succinyl-CoA synthetase (SCS) catalyzes the only substrate-level phosphorylation step in the tricarboxylic acid cycle. Human GTP-specific SCS (GTPSCS), an αβ-heterodimer, was produced in Escherichia coli. The purified protein crystallized from a solution containing tartrate, CoA and magnesium chloride, and a crystal diffracted to 1.52 Å resolution. Tartryl-CoA was discovered to be bound to GTPSCS. The CoA portion lies in the amino-terminal domain of the α-subunit and the tartryl end extends towards the catalytic histidine residue. The terminal carboxylate binds to the phosphate-binding site of GTPSCS.


Authorea ◽  
2020 ◽  
Author(s):  
KAPIL VASHISHT ◽  
PALLAVI SINGH ◽  
SONIA VERMA ◽  
RAJNIKANT DIXIT ◽  
NEELIMA MISHRA ◽  
...  

2019 ◽  
Vol 75 (7) ◽  
pp. 647-659
Author(s):  
Ji Huang ◽  
Vinh H. Nguyen ◽  
Karleigh A. Hamblin ◽  
Robin Maytum ◽  
Mark van der Giezen ◽  
...  

Succinyl-CoA synthetase (SCS) catalyzes the only step of the tricarboxylic acid cycle that leads to substrate-level phosphorylation. Some forms of SCS are specific for ADP/ATP or for GDP/GTP, while others can bind all of these nucleotides, generally with different affinities. The theory of `gatekeeper' residues has been proposed to explain the nucleotide-specificity. Gatekeeper residues lie outside the binding site and create specific electrostatic interactions with incoming nucleotides to determine whether the nucleotides can enter the binding site. To test this theory, the crystal structure of the nucleotide-binding domain in complex with Mg2+-ADP was determined, as well as the structures of four proteins with single mutations, K46βE, K114βD, V113βL and L227βF, and one with two mutations, K46βE/K114βD. The crystal structures show that the enzyme is specific for ADP/ATP because of interactions between the nucleotide and the binding site. Nucleotide-specificity is provided by hydrogen-bonding interactions between the adenine base and Gln20β, Gly111β and Val113β. The O atom of the side chain of Gln20β interacts with N6 of ADP, while the side-chain N atom interacts with the carbonyl O atom of Gly111β. It is the different conformations of the backbone at Gln20β, of the side chain of Gln20β and of the linker that make the enzyme ATP-specific. This linker connects the two subdomains of the ATP-grasp fold and interacts differently with adenine and guanine bases. The mutant proteins have similar conformations, although the L227βF mutant shows structural changes that disrupt the binding site for the magnesium ion. Although the K46βE/K114βD double mutant ofBlastocystis hominisSCS binds GTP better than ATP according to kinetic assays, only the complex with Mg2+-ADP was obtained.


Sign in / Sign up

Export Citation Format

Share Document