prairie dogs
Recently Published Documents


TOTAL DOCUMENTS

544
(FIVE YEARS 56)

H-INDEX

40
(FIVE YEARS 3)

Author(s):  
Marc R. Matchett ◽  
Thomas R. Stanley ◽  
Matthew F. Mccollister ◽  
David A. Eads ◽  
Jesse T. Boulerice ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Chadwick Kaufmann ◽  
Loren Cassin-Sackett

Soil microbial communities both reflect and influence biotic and abiotic processes occurring at or near the soil surface. Ecosystem engineers that physically alter the soil surface, such as burrowing ground squirrels, are expected to influence the distribution of soil microbial communities. Black-tailed prairie dogs (Cynomys ludovicianus) construct complex burrows in which activities such as nesting, defecating, and dying are partitioned spatially into different chambers. Prairie dogs also experience large-scale die-offs due to sylvatic plague, caused by the bacterium Yersinia pestis, which lead to mass mortality events with potential repercussions on microbial communities. We used 16S sequencing to examine microbial communities in soil that was excavated by prairie dogs from different burrow locations, and surface soil that was used in the construction of burrow entrances, in populations that experienced plague die-offs. Following the QIIME2 pipeline, we assessed microbial diversity at several taxonomic levels among burrow regions. To do so, we computed community similarity metrics (Bray–Curtis, Jaccard, and weighted and unweighted UniFrac) among samples and community diversity indexes (Shannon and Faith phylogenetic diversity indexes) within each sample. Microbial communities differed across burrow regions, and several taxa exhibited spatial variation in relative abundance. Microbial ecological diversity (Shannon index) was highest in soil recently excavated from within burrows and soils associated with dead animals, and was lowest in soils associated with scat. Phylogenetic diversity varied only marginally within burrows, but the trends paralleled those for Shannon diversity. Yersinia was detected in four samples from one colony, marking the first time the genus has been sampled from soil on prairie dog colonies. The presence of Yersinia was a significant predictor of five bacterial families and eight microbial genera, most of which were rare taxa found in higher abundance in the presence of Yersinia, and one of which, Dictyostelium, has been proposed as an enzootic reservoir of Y. pestis. This study demonstrates that mammalian modifications to soil structure by physical alterations and by mass mortality can influence the distribution and diversity of microbial communities.


2021 ◽  
Vol 135 (2) ◽  
pp. 120-123
Author(s):  
Thomas S. Jung

Interactions between Coyote (Canis latrans) and Golden Eagle (Aquila chrysaetos) are complex and likely not yet fully documented or understood. I observed a Coyote prey on a Black-tailed Prairie Dog (Cynomys ludovicianus) at the edge of a large colony in Grasslands National Park, Saskatchewan. The prairie dogs were vigilant toward three Golden Eagles circling above, and the Coyote apparently used this to its advantage. As such, the eagles appeared to facilitate the ability of the Coyote to rush in virtually undetected and prey on a prairie dog that was distracted by the avian predators. This observation is of scientific interest because it is another example of the varied interactions between Coyotes and Golden Eagles, which is competitive and includes kleptoparasitism.


Behaviour ◽  
2021 ◽  
pp. 1-18
Author(s):  
Ferenc Jordán ◽  
Bálint Kovács ◽  
Jennifer L. Verdolin

Abstract Increasingly we are discovering that the interactions between individuals within social groups can be quite complex and flexible. Social network analysis offers a toolkit to describe and quantify social structure, the patterns we observe, and evaluate the social and environmental factors that shape group dynamics. Here, we used 14 Gunnison’s prairie dogs networks to evaluate how resource availability and network size influenced four global properties of the networks (centralization, clustering, average path length, small word index). Our results suggest a positive correlation between overall network cohesion and resource availability, such that networks became less centralized and cliquish as biomass/m2 availability decreased. We also discovered that network size modulates the link between social interactions and resource availability and is consistent with a more ‘decentralized’ group. This study highlights the importance of how individuals modify social cohesions and network connectedness as a way to reduce intragroup competition under different ecological conditions.


2021 ◽  
Vol 76 ◽  
pp. 12-21
Author(s):  
Jameson Brennan ◽  
Kenneth Olson ◽  
Patricia Johnson ◽  
Janna Block ◽  
Christopher Schauer

Sign in / Sign up

Export Citation Format

Share Document