space nuclear power
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 28)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 77 (4) ◽  
pp. 203-206
Author(s):  
Stephen Buono ◽  
Jake Hecla ◽  
Vladimir Kobezskii ◽  
Katie Mummah ◽  
Julien de Troullioud de Lanversin

2021 ◽  
Vol 91 (3) ◽  
pp. 327-334
Author(s):  
Yu. G. Dragunov

2021 ◽  
pp. 1-9
Author(s):  
Richard M. Ambrosi ◽  
Daniel P. Kramer ◽  
Emily Jane Watkinson ◽  
Ramy Mesalam ◽  
Alessandra Barco

2021 ◽  
Vol 131 ◽  
pp. 103607
Author(s):  
Shabbeer Ahmad ◽  
Bo Chang ◽  
Bin Li ◽  
Qi Yang ◽  
Chao Liu

2021 ◽  
Vol 247 ◽  
pp. 06007
Author(s):  
Yugao Ma ◽  
Minyun Liu ◽  
Erhui Chen ◽  
Biheng Xie ◽  
Xiaoming Chai ◽  
...  

The heat pipe cooled reactor is a solid-state reactor using heat pipes to passively transfer heat generated from the reactor, which is a potential and near-term space nuclear power system. This paper introduces the coupling scheme between the continuous energy Reactor Monte Carlo (RMC) code and the finite element method commercial software ANSYS. Monte Carlo method has the advantages of flexible geometry modeling and continuous-energy nuclear cross sections. ANSYS Parametric Design Language (APDL) is used to determine the detailed temperature distributions and geometric deformation. The on-the-fly temperature treatment of cross sections was adopted in RMC code to solve the memory problems and to speed up simulations. This paper proposed a geometric updating strategy and reactivity feedback methods for the geometric deformation of the solid-state core. The neutronic and thermal-mechanical coupling platform is developed to analyze and further to optimize the heat pipe cooled reactor design. The present coupling codes analyze a 2D central cross-section model for MEGAPOWER heat pipe cooled reactor. The thermal-mechanical feedback reveals that the solid-state reactor has a negative reactivity feedback (~1.5 pcm/K) while it has a deterioration in heat transfer due to the expansion.


Sign in / Sign up

Export Citation Format

Share Document