local exhaust ventilation
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 32)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
pp. 002203452110562
Author(s):  
J.R. Allison ◽  
C. Dowson ◽  
K. Pickering ◽  
G. Červinskytė ◽  
J. Durham ◽  
...  

Dental procedures produce aerosols that may remain suspended and travel significant distances from the source. Dental aerosols and droplets contain oral microbes, and there is potential for infectious disease transmission and major disruption to dental services during infectious disease outbreaks. One method to control hazardous aerosols often used in industry is local exhaust ventilation (LEV). The aim of this study was to investigate the effect of LEV on aerosols and droplets produced during dental procedures. Experiments were conducted on dental mannequins in an 825.4-m3 open-plan clinic and a 49.3-m3 single surgery. Ten-minute crown preparations were performed with an air-turbine handpiece in the open-plan clinic and 10-min full-mouth ultrasonic scaling in the single surgery. Fluorescein was added to instrument irrigation reservoirs as a tracer. In both settings, optical particle counters (OPCs) were used to measure aerosol particles between 0.3 and 10.0 µm, and liquid cyclone air samplers were used to capture aerosolized fluorescein tracer. In addition, in the open-plan setting, fluorescein tracer was captured by passive settling onto filter papers in the environment. Tracer was quantified fluorometrically. An LEV device with high-efficiency particulate air filtration and a flow rate of 5,000 L/min was used. LEV reduced aerosol production from the air-turbine handpiece by 90% within 0.5 m, and this was 99% for the ultrasonic scaler. OPC particle counts were substantially reduced for both procedures and air-turbine settled droplet detection reduced by 95% within 0.5 m. The effect of LEV was substantially greater than suction alone for the air-turbine and was similar to the effect of suction for the ultrasonic scaler. LEV reduces aerosol and droplet contamination from dental procedures by at least 90% in the breathing zone of the operator, and it is therefore a valuable tool to reduce the dispersion of dental aerosols.


Author(s):  
V.V. Shaptala ◽  
◽  
K.I. Logachev ◽  
E.E. Khukalenko ◽  
◽  
...  

The most important means of protecting the labor of electric welders is local exhaust ventilation, if required supplemented by general exchange ventilation of electric welding rooms, which contributes to maintaining the normalized state of the air environment. In real conditions, the dust-gas environment of the welding station is influenced by a combination of factors such as the location of welders breathing zone, the relative location of the welding point, and the suction opening of the exhaust device, and the air mobility associated with the aerodynamic interaction of the supply and exhaust devices. The desire to reduce the productivity and energy consumption of exhaust devices usually leads to a change in their effect on the state of the air environment. Therefore, along with the design features of the air extract, it is of great importance that the designs of the exhaust devices correspond to the nature of the welding work performed, as well as the space-planning solution for the mutual arrangement of welding posts and supply and exhaust devices, especially in the rooms with a limited volume. The article is devoted to the analysis of the effect of these factors on the dust and gas environment of the electric welding stations, and the search for their rational combination by the method of computer modeling using the Ansys Fluent hydrodynamic package. To approximate the complex dependence of the carryover into the room, and the concentration in the breathing zone of harmful impurities on the main influencing factors, it is proposed to use a neural network of direct propagation. The architecture and results of testing a neural network model of one of the types of exhaust devices are presented.


Toxics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 201
Author(s):  
Carla Ribalta ◽  
Ana López-Lilao ◽  
Ana Sofia Fonseca ◽  
Alexander Christian Østerskov Jensen ◽  
Keld Alstrup Jensen ◽  
...  

One- and two-box models have been pointed out as useful tools for modelling indoor particle exposure. However, model performance still needs further testing if they are to be implemented as trustworthy tools for exposure assessment. The objective of this work is to evaluate the performance, applicability and reproducibility of one- and two-box models on real-world industrial scenarios. A study on filling of seven materials in three filling lines with different levels of energy and mitigation strategies was used. Inhalable and respirable mass concentrations were calculated with one- and two-box models. The continuous drop and rotating drum methods were used for emission rate calculation, and ranges from a one-at-a-time methodology were applied for local exhaust ventilation efficiency and inter-zonal air flows. When using both dustiness methods, large differences were observed for modelled inhalable concentrations but not for respirable, which showed the importance to study the linkage between dustiness and processes. Higher model accuracy (ratio modelled vs. measured concentrations 0.5–5) was obtained for the two- (87%) than the one-box model (53%). Large effects on modelled concentrations were seen when local exhausts ventilation and inter-zonal variations where parametrized in the models. However, a certain degree of variation (10–20%) seems acceptable, as similar conclusions are reached.


2021 ◽  
Author(s):  
James R Allison ◽  
Christopher Dowson ◽  
Kimberley Pickering ◽  
Greta Červinskytė ◽  
Justin Durham ◽  
...  

Dental procedures produce aerosols which may remain suspended and travel significant distances from the source. Dental aerosols and droplets contain oral microbes and there is potential for infectious disease transmission and major disruption to dental services during infectious disease outbreaks. One method to control hazardous aerosols often used in industry is Local Exhaust Ventilation (LEV). The aim of this study was to investigate the effect of LEV on aerosols and droplets produced during dental procedures. Experiments were conducted on dental mannequins in an 825.4 m3 open plan clinic, and a 49.3 m3 single surgery. 10-minute crown preparations were performed with an air-turbine handpiece in the open plan clinic, and 10-minute full mouth ultrasonic scaling in the single surgery. Fluorescein was added to instrument irrigation reservoirs as a tracer. In both settings, Optical Particle Counters (OPCs) were used to measure aerosol particles between 0.3 - 10.0 μm and liquid cyclone air samplers were used to capture aerosolised fluorescein tracer. Additionally, in the open plan setting fluorescein tracer was captured by passive settling onto filter papers in the environment. Tracer was quantified fluorometrically. An LEV device with High Efficiency Particulate Air (HEPA) filtration and a flow rate of 5,000 L/min was used. LEV reduced aerosol production from the air-turbine handpiece by 90% within 0.5 m, and this was 99% for the ultrasonic scaler. OPC particle counts were substantially reduced for both procedures, and air-turbine settled droplet detection reduced by 95% within 0.5 m. The effect of LEV was substantially greater than suction alone for the air-turbine and was similar to the effect of suction for the ultrasonic scaler. LEV reduces aerosol and droplet contamination from dental procedures by at least 90% in the breathing zone of the operator and it is therefore a valuable tool to reduce the dispersion of dental aerosols.


Author(s):  
Meghan E Dueck ◽  
Ata Rafiee ◽  
James Mino ◽  
Sindhu G Nair ◽  
Samineh Kamravaei ◽  
...  

Abstract Welding fumes vary in composition depending on the materials and processes used, and while health outcomes in full-time welders have been widely studied, limited research on apprentices exists. Besides, few data are available for metals such as vanadium and antimony. This study aimed to look at individual metals present in welding fumes in the learning environment of apprentice welders. Forty-three welders and 41 controls were chosen from trade programmes at the Northern Alberta Institute of Technology. Ambient and personal air samples were collected at days 0, 1, 7, and 50 of their training and analysed for mass and metal concentrations using Inductively Coupled Plasma Mass Spectrometry. Results showed increases in particle and metal concentrations as apprentices progressed throughout their education and that concentrations at day 50 were similar to levels found in the literature for professional welders. Variable concentrations indicate that some individuals may not properly use the local exhaust ventilation system. Other possible explanation for variations are the position of the sampler on the shoulder, the time spent welding and in each welding position, and the skills of the welders. Strong relationships were observed between particle and metal concentrations, suggesting that these relationships could be used to estimate metal exposure in welders from particle exposure. Welding processes were the most important determinant of exposure in apprentice welders, with Metal Core Arc Welding producing the largest particle concentrations followed by oxyacetylene cutting, and Gas Metal Arc Welding. Health risk assessment showed that welder apprentices are at risk for overexposure to manganese, which suggests that professional welders should be monitored for manganese as they are exposed more than apprentices. Training in proper positioning of local exhaust ventilation system and proper use of respirators are recommended in training facilities.


Author(s):  
A. Shashin ◽  
R. Sheps ◽  
A. Seminenko ◽  
V. Minko

Exhaust ventilation systems in industrial enterprises and facilities with the use of harmful substances largely determine the air exchange in the workplace to ensure normalized sanitary and hygienic conditions and operating costs. Local exhaust ventilation of explosive harmful substances is of particular importance for effective air exchange in such rooms, since their localization, suction and transportation are subject to increased requirements. The paper presents the results of analytical and experimental studies of the operation mode of a complex local exhaust device with a gas ejector for extraction explosive harmful chemicals from shelters, ensuring their effective localization, purification and recirculation of air. The boundary conditions and assumptions for calculating the characteristics of the processes of gas flow ejection, purification of technological emissions and recirculation of the purified gas flow, determined on the basis of the analysis of previously performed studies and experimental work, are given. The conditions of rational ratios device settings of extraction of emissions sources of substances that parameters of the ejector and cleaning device emission, which is achieved economic and environmental efficiency of the installation and excludes the volatile situation on the threat of chemical enterprises and objects.


Sign in / Sign up

Export Citation Format

Share Document