scholarly journals Local exhaust ventilation with reduced energy consumption during bulk materials overloads into receiving cones of coarse crushing plants

2021 ◽  
Vol 1926 (1) ◽  
pp. 012022
Author(s):  
O A Averkova ◽  
A A Golyshev ◽  
K I Logachev ◽  
V A Uvarov
2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Sedra Habib ◽  
Hafiz O. Ahmed ◽  
Naema Al-Muhairi ◽  
Reem Ziad

Background. Perchloroethylene (PERC) is a widely spread cleaning solvent, used in nearly all dry-cleaning facilities. It has been declared as “probable human carcinogen” by the International Agency for Research on Cancer (IARC) due to its hazardous and toxic effects on human health. The study aimed at assessing the exposure of PERC among dry-cleaning workers at four different dry-cleaning facilities in the UAE. Methods. The four dry-cleaning facilities, using PERC in one of the cities of the UAE, were selected. Draeger perchloroethylene 10/b detector tubes along with a Draeger accuro pump were used to estimate the levels of PERC exposure in three main selected positions in each of the facilities. Results. The results showed that the second selected position had the highest amounts of PERC exposure above the international and local standards in 3 out of 4 selected facilities. The workers at position 2, who were not using any of the provided personal protective equipment, were at the highest risk of developing PERC-related health problems. Conclusion. It is important to install local exhaust ventilation systems and monitoring devices of PERC concentrations in these facilities, along with raising the awareness of workers about the health effects of PERC and the importance of using personal protective equipment (PPE) while performing their job.


Solar Energy ◽  
2005 ◽  
Author(s):  
D. Dong ◽  
M. Liu

Investigations of a desiccant dehumidifier system have been performed for humidity control application in confined spaces. A previous study revealed that the base dehumidifier system can reduce moisture condensation by 22% over a conventional exhaust ventilation system. The current study aims to develop improved design requirements for a desiccant dehumidifier. The energy consumption of an exhaust ventilation system and an improved dehumidifier system was compared. To investigate the improved desiccant dehumidification system, numerical simulations were conducted and an objective function was established. This paper presents simulated results for an existing desiccant dehumidification system and an improved system, in which improved parameters are used. Use of the improved design parameters can reduce moisture condensation by 26.6% over a base dehumidifier system and shorten the dehumidifier performance period by 14%. Energy consumption with the sole use of an exhaust system is compared with that of the improved dehumidifier system under the same conditions. The results show that energy consumption can be substantially reduced, by 63%, in the improved dehumidifier system with the same amount of moisture condensation on surfaces of the confined space.


2020 ◽  
Vol 33 (2) ◽  
pp. 310-315 ◽  
Author(s):  
Tee Lin ◽  
Omid Ali Zargar ◽  
Oscar Juina ◽  
Tzu-Chieh Lee ◽  
Dexter Lyndon Sabusap ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document