scene modeling
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 26)

H-INDEX

19
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8382
Author(s):  
Hongjae Lee ◽  
Jiyoung Jung

Urban scene modeling is a challenging but essential task for various applications, such as 3D map generation, city digitization, and AR/VR/metaverse applications. To model man-made structures, such as roads and buildings, which are the major components in general urban scenes, we present a clustering-based plane segmentation neural network using 3D point clouds, called hybrid K-means plane segmentation (HKPS). The proposed method segments unorganized 3D point clouds into planes by training the neural network to estimate the appropriate number of planes in the point cloud based on hybrid K-means clustering. We consider both the Euclidean distance and cosine distance to cluster nearby points in the same direction for better plane segmentation results. Our network does not require any labeled information for training. We evaluated the proposed method using the Virtual KITTI dataset and showed that our method outperforms conventional methods in plane segmentation. Our code is publicly available.


2021 ◽  
Vol 150 (4) ◽  
pp. A121-A121
Author(s):  
YeonJoon Cheong ◽  
K. Alex Shorter ◽  
Bogdan-Ioan Popa

2021 ◽  
Vol 13 (16) ◽  
pp. 3235
Author(s):  
Thomas Miraglio ◽  
Margarita Huesca ◽  
Jean-Philippe Gastellu-Etchegorry ◽  
Crystal Schaaf ◽  
Karine R. M. Adeline ◽  
...  

Equivalent water thickness (EWT) and leaf mass per area (LMA) are important indicators of plant processes, such as photosynthetic and potential growth rates and health status, and are also important variables for fire risk assessment. Retrieving these traits through remote sensing is challenging and often requires calibration with in situ measurements to provide acceptable results. However, calibration data cannot be expected to be available at the operational level when estimating EWT and LMA over large regions. In this study, we assessed the ability of a hybrid retrieval method, consisting of training a random forest regressor (RFR) over the outputs of the discrete anisotropic radiative transfer (DART) model, to yield accurate EWT and LMA estimates depending on the scene modeling within DART and the spectral interval considered. We show that canopy abstractions mostly affect crown reflectance over the 0.75–1.3 μm range. It was observed that excluding these wavelengths when training the RFR resulted in the abstraction level having no effect on the subsequent LMA estimates (RMSE of 0.0019 g/cm2 for both the detailed and abstract models), and EWT estimates were not affected by the level of abstraction. Over AVIRIS-Next Generation images, we showed that the hybrid method trained with a simplified scene obtained accuracies (RMSE of 0.0029 and 0.0028 g/cm2 for LMA and EWT) consistent with what had been obtained from the test dataset of the calibration phase (RMSE of 0.0031 and 0.0032 g/cm2 for LMA and EWT), and the result yielded spatially coherent maps. The results demonstrate that, provided an appropriate spectral domain is used, the uncertainties inherent to the abstract modeling of tree crowns within an RTM do not significantly affect EWT and LMA accuracy estimates when tree crowns can be identified in the images.


2021 ◽  
Vol 248 ◽  
pp. 02051
Author(s):  
Jiang Wen ◽  
Yang Jin Hu ◽  
Zhai Wei ◽  
Xu Guangbing ◽  
Xiang Xinxin ◽  
...  

In this paper, through the application of 3D design technology in the construction of 220kV Miluoxi substation, the main aspects of the application of 3D design technology in the construction are summarized, including inter discipline verification, collision inspection, real scene modeling, equipment 3D installation details, 4D construction simulation, VR technology application and mobile application solutions. This paper also summarizes the economic, management and social benefits of three-dimensional application, which can be used as a reference for the following projects.


Sign in / Sign up

Export Citation Format

Share Document