maltose permease
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 0)

H-INDEX

19
(FIVE YEARS 0)

2017 ◽  
Vol 83 (13) ◽  
Author(s):  
Mizuki Tanaka ◽  
Tetsuya Hiramoto ◽  
Hinako Tada ◽  
Takahiro Shintani ◽  
Katsuya Gomi

ABSTRACT Aspergillus oryzae produces copious amount of amylolytic enzymes, and MalP, a major maltose permease, is required for the expression of amylase-encoding genes. The expression of these genes is strongly repressed by carbon catabolite repression (CCR) in the presence of glucose. MalP is transported from the plasma membrane to the vacuole by endocytosis, which requires the homolog of E6-AP carboxyl terminus ubiquitin ligase HulA, an ortholog of yeast Rsp5. In yeast, arrestin-like proteins mediate endocytosis as adaptors of Rsp5 and transporters. In the present study, we examined the involvement of CreD, an arrestin-like protein, in glucose-induced MalP endocytosis and CCR of amylase-encoding genes. Deletion of creD inhibited the glucose-induced endocytosis of MalP, and CreD showed physical interaction with HulA. Phosphorylation of CreD was detected by Western blotting, and two serine residues were determined as the putative phosphorylation sites. However, the phosphorylation state of the serine residues did not regulate MalP endocytosis and its interaction with HulA. Although α-amylase production was significantly repressed by creD deletion, both phosphorylation and dephosphorylation mimics of CreD had a negligible effect on α-amylase activity. Interestingly, dephosphorylation of CreD was required for CCR relief of amylase genes that was triggered by disruption of the deubiquitinating enzyme-encoding gene creB. The α-amylase activity of the creB mutant was 1.6-fold higher than that of the wild type, and the dephosphorylation mimic of CreD further improved the α-amylase activity by 2.6-fold. These results indicate that a combination of the dephosphorylation mutation of CreD and creB disruption increased the production of amylolytic enzymes in A. oryzae. IMPORTANCE In eukaryotes, glucose induces carbon catabolite repression (CCR) and proteolytic degradation of plasma membrane transporters via endocytosis. Glucose-induced endocytosis of transporters is mediated by their ubiquitination, and arrestin-like proteins act as adaptors of transporters and ubiquitin ligases. In this study, we showed that CreD, an arrestin-like protein, is involved in glucose-induced endocytosis of maltose permease and carbon catabolite derepression of amylase gene expression in Aspergillus oryzae. Dephosphorylation of CreD was required for CCR relief triggered by the disruption of creB, which encodes a deubiquitinating enzyme; a combination of the phosphorylation-defective mutation of CreD and creB disruption dramatically improved α-amylase production. This study shows the dual function of an arrestin-like protein and provides a novel approach for improving the production of amylolytic enzymes in A. oryzae.


2015 ◽  
Vol 82 ◽  
pp. 136-144 ◽  
Author(s):  
Tetsuya Hiramoto ◽  
Mizuki Tanaka ◽  
Takanori Ichikawa ◽  
Yuka Matsuura ◽  
Sachiko Hasegawa-Shiro ◽  
...  

Microbiology ◽  
2009 ◽  
Vol 155 (12) ◽  
pp. 3893-3902 ◽  
Author(s):  
Wanwipa Vongsangnak ◽  
Margarita Salazar ◽  
Kim Hansen ◽  
Jens Nielsen

Maltose utilization and regulation in aspergilli is of great importance for cellular physiology and industrial fermentation processes. In Aspergillus oryzae, maltose utilization requires a functional MAL locus, composed of three genes: MALR encoding a regulatory protein, MALT encoding maltose permease and MALS encoding maltase. Through a comparative genome and transcriptome analysis we show that the MAL regulon system is active in A. oryzae while it is not present in Aspergillus niger. In order to utilize maltose, A. niger requires a different regulatory system that involves the AmyR regulator for glucoamylase (glaA) induction. Analysis of reporter metabolites and subnetworks illustrates the major route of maltose transport and metabolism in A. oryzae. This demonstrates that overall metabolic responses of A. oryzae occur in terms of genes, enzymes and metabolites when the carbon source is altered. Although the knowledge of maltose transport and metabolism is far from being complete in Aspergillus spp., our study not only helps to understand the sugar preference in industrial fermentation processes, but also indicates how maltose affects gene expression and overall metabolism.


2005 ◽  
Vol 71 (12) ◽  
pp. 7846-7857 ◽  
Author(s):  
Virve Vidgren ◽  
Laura Ruohonen ◽  
John Londesborough

ABSTRACT Maltose and maltotriose are the major sugars in brewer's wort. Brewer's yeasts contain multiple genes for maltose transporters. It is not known which of these express functional transporters. We correlated maltose transport kinetics with the genotypes of some ale and lager yeasts. Maltose transport by two ale strains was strongly inhibited by other α-glucosides, suggesting the use of broad substrate specificity transporters, such as Agt1p. Maltose transport by three lager strains was weakly inhibited by other α-glucosides, suggesting the use of narrow substrate specificity transporters. Hybridization studies showed that all five strains contained complete MAL1, MAL2, MAL3, and MAL4 loci, except for one ale strain, which lacked a MAL2 locus. All five strains also contained both AGT1 (coding a broad specificity α-glucoside transporter) and MAL11 alleles. MPH genes (maltose permease homologues) were present in the lager but not in the ale strains. During growth on maltose, the lager strains expressed AGT1 at low levels and MALx1 genes at high levels, whereas the ale strains expressed AGT1 at high levels and MALx1 genes at low levels. MPHx expression was negligible in all strains. The AGT1 sequences from the ale strains encoded full-length (616 amino acid) polypeptides, but those from both sequenced lager strains encoded truncated (394 amino acid) polypeptides that are unlikely to be functional transporters. Thus, despite the apparently similar genotypes of these ale and lager strains revealed by hybridization, maltose is predominantly carried by AGT1-encoded transporters in the ale strains and by MALx1-encoded transporters in the lager strains.


2004 ◽  
Vol 70 (5) ◽  
pp. 2771-2778 ◽  
Author(s):  
Matthieu Jules ◽  
Vincent Guillou ◽  
Jean François ◽  
Jean-Luc Parrou

ABSTRACT The yeast Saccharomyces cerevisiae can synthesize trehalose and also use this disaccharide as a carbon source for growth. However, the molecular mechanism by which extracellular trehalose can be transported to the vacuole and degraded by the acid trehalase Ath1p is not clear. By using an adaptation of the assay of invertase on whole cells with NaF, we showed that more than 90% of the activity of Ath1p is extracellular, splitting of the disaccharide into glucose. We also found that Agt1p-mediated trehalose transport and the hydrolysis of the disaccharide by the cytosolic neutral trehalase Nth1p are coupled and represent a second, independent pathway, although there are several constraints on this alternative route. First, the AGT1/MAL11 gene is controlled by the MAL system, and Agt1p was active in neither non-maltose-fermenting nor maltose-inducible strains. Second, Agt1p rapidly lost activity during growth on trehalose, by a mechanism similar to the sugar-induced inactivation of the maltose permease. Finally, both pathways are highly pH sensitive and effective growth on trehalose occurred only when the medium was buffered at around pH 5.0. The catabolism of trehalose was purely oxidative, and since levels of Ath1p limit the glucose flux in the cells, batch cultures on trehalose may provide a useful alternative to glucose-limited chemostat cultures for investigation of metabolic responses in yeast.


2004 ◽  
Vol 70 (4) ◽  
pp. 1956-1963 ◽  
Author(s):  
Mickel L. A. Jansen ◽  
Pascale Daran-Lapujade ◽  
Johannes H. de Winde ◽  
Matthew D. W. Piper ◽  
Jack T. Pronk

ABSTRACT Prolonged cultivation (>25 generations) of Saccharomyces cerevisiae in aerobic, maltose-limited chemostat cultures led to profound physiological changes. Maltose hypersensitivity was observed when cells from prolonged cultivations were suddenly exposed to excess maltose. This substrate hypersensitivity was evident from massive cell lysis and loss of viability. During prolonged cultivation at a fixed specific growth rate, the affinity for the growth-limiting nutrient (i.e., maltose) increased, as evident from a decreasing residual maltose concentration. Furthermore, the capacity of maltose-dependent proton uptake increased up to 2.5-fold during prolonged cultivation. Genome-wide transcriptome analysis showed that the increased maltose transport capacity was not primarily due to increased transcript levels of maltose-permease genes upon prolonged cultivation. We propose that selection for improved substrate affinity (ratio of maximum substrate consumption rate and substrate saturation constant) in maltose-limited cultures leads to selection for cells with an increased capacity for maltose uptake. At the same time, the accumulative nature of maltose-proton symport in S. cerevisiae leads to unrestricted uptake when maltose-adapted cells are exposed to a substrate excess. These changes were retained after isolation of individual cell lines from the chemostat cultures and nonselective cultivation, indicating that mutations were involved. The observed trade-off between substrate affinity and substrate tolerance may be relevant for metabolic engineering and strain selection for utilization of substrates that are taken up by proton symport.


FEBS Letters ◽  
2003 ◽  
Vol 544 (1-3) ◽  
pp. 160-164 ◽  
Author(s):  
Isabel Mayordomo ◽  
Jochen Regelmann ◽  
Jaroslav Horak ◽  
Pascual Sanz

Sign in / Sign up

Export Citation Format

Share Document