Concentrated sulfuric acid is generally used as a catalyst for producing brominated alkanes in traditional methods, but is highly corrosive and difficult to separate. This work reports the preparation of bromopropane from n-propanol based on a reactive distillation strategy combined with alumina-modified sulfated zirconia (Al2O3/SO42−/ZrO2) as a heterogenous catalyst. As expected, under the optimum reaction conditions (110 °C), the yield of bromopropane was 96.18% without side reactions due to the reactive distillation strategy. Meanwhile, the microscopic morphology and performance of Al2O3/SO42−/ZrO2 were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunner–Emmet–Teller (BET), Fourier transform infrared spectroscopy (FT–IR), and other characterization methods. The results confirmed that the morphology of zirconia sulfate is effectively regulated by the modification method of alumina, and more edges and angles provide more catalytic acid sites for the reaction. Furthermore, Al2O3/SO42−/ZrO2 exhibited high stability and remarkable reusability due to the strong chemical bond Zr–Al–Zr. This work provides a practical method for the preparation of bromopropane and can be further extended to the preparation of other bromoalkanes.