chemical master equation
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 28)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Vol 17 (12) ◽  
pp. e1009623
Author(s):  
Ankit Gupta ◽  
Christoph Schwab ◽  
Mustafa Khammash

Stochastic models of biomolecular reaction networks are commonly employed in systems and synthetic biology to study the effects of stochastic fluctuations emanating from reactions involving species with low copy-numbers. For such models, the Kolmogorov’s forward equation is called the chemical master equation (CME), and it is a fundamental system of linear ordinary differential equations (ODEs) that describes the evolution of the probability distribution of the random state-vector representing the copy-numbers of all the reacting species. The size of this system is given by the number of states that are accessible by the chemical system, and for most examples of interest this number is either very large or infinite. Moreover, approximations that reduce the size of the system by retaining only a finite number of important chemical states (e.g. those with non-negligible probability) result in high-dimensional ODE systems, even when the number of reacting species is small. Consequently, accurate numerical solution of the CME is very challenging, despite the linear nature of the underlying ODEs. One often resorts to estimating the solutions via computationally intensive stochastic simulations. The goal of the present paper is to develop a novel deep-learning approach for computing solution statistics of high-dimensional CMEs by reformulating the stochastic dynamics using Kolmogorov’s backward equation. The proposed method leverages superior approximation properties of Deep Neural Networks (DNNs) to reliably estimate expectations under the CME solution for several user-defined functions of the state-vector. This method is algorithmically based on reinforcement learning and it only requires a moderate number of stochastic simulations (in comparison to typical simulation-based approaches) to train the “policy function”. This allows not just the numerical approximation of various expectations for the CME solution but also of its sensitivities with respect to all the reaction network parameters (e.g. rate constants). We provide four examples to illustrate our methodology and provide several directions for future research.


2021 ◽  
Author(s):  
Vincent Wagner ◽  
Benjamin Castellaz ◽  
Marco Oesting ◽  
Nicole Radde

MotivationThe Chemical Master Equation is the most comprehensive stochastic approach to describe the evolution of a (bio-)chemical reaction system. Its solution is a time-dependent probability distribution on all possible configurations of the system. As the number of possible configurations is typically very large, the Master Equation is often practically unsolvable. The Method of Moments reduces the system to the evolution of a few moments of this distribution, which are described by a system of ordinary differential equations. Those equations are not closed, since lower order moments generally depend on higher order moments. Various closure schemes have been suggested to solve this problem, with different advantages and limitations. Two major problems with these approaches are first that they are open loop systems, which can diverge from the true solution, and second, some of them are computationally expensive.ResultsHere we introduce Quasi-Entropy Closure, a moment closure scheme for the Method of Moments which estimates higher order moments by reconstructing the distribution that minimizes the distance to a uniform distribution subject to lower order moment constraints. Quasi-Entropy closure is similar to Zero-Information closure, which maximizes the information entropy. Results show that both approaches outperform truncation schemes. Moreover, Quasi-Entropy Closure is computationally much faster than Zero-Information Closure. Finally, our scheme includes a plausibility check for the existence of a distribution satisfying a given set of moments on the feasible set of configurations. Results are evaluated on different benchmark problems.Abstract Figure


2021 ◽  
Vol 17 (7) ◽  
pp. e1009214
Author(s):  
Davin Lunz ◽  
Gregory Batt ◽  
Jakob Ruess ◽  
J. Frédéric Bonnans

The chemical master equation and its continuum approximations are indispensable tools in the modeling of chemical reaction networks. These are routinely used to capture complex nonlinear phenomena such as multimodality as well as transient events such as first-passage times, that accurately characterise a plethora of biological and chemical processes. However, some mechanisms, such as heterogeneous cellular growth or phenotypic selection at the population level, cannot be represented by the master equation and thus have been tackled separately. In this work, we propose a unifying framework that augments the chemical master equation to capture such auxiliary dynamics, and we develop and analyse a numerical solver that accurately simulates the system dynamics. We showcase these contributions by casting a diverse array of examples from the literature within this framework and applying the solver to both match and extend previous studies. Analytical calculations performed for each example validate our numerical results and benchmark the solver implementation.


2021 ◽  
Vol 155 (3) ◽  
pp. 034102
Author(s):  
Ion Gabriel Ion ◽  
Christian Wildner ◽  
Dimitrios Loukrezis ◽  
Heinz Koeppl ◽  
Herbert De Gersem

2021 ◽  
Author(s):  
Ankit Gupta ◽  
Christoph Schwab ◽  
Mustafa Khammash

Stochastic models of biomolecular reaction networks are commonly employed in systems and synthetic biology to study the effects of stochastic fluctuations emanating from reactions involving species with low copy-numbers. For such models, the Kolmogorov's forward equation is called the chemical master equation (CME), and it is a fundamental system of linear ordinary differential equations (ODEs) that describes the evolution of the probability distribution of the random state-vector representing the copy-numbers of all the reacting species. The size of this system is given by the number of states that are accessible by the chemical system, and for most examples of interest this number is either very large or infinite. Moreover, approximations that reduce the size of the system by retaining only a finite number of important chemical states (e.g. those with non-negligible probability) result in high-dimensional ODE systems, even when the number of reacting species is small. Consequently, accurate numerical solution of the CME is very challenging, despite the linear nature of the underlying ODEs. One often resorts to estimating the solutions via computationally intensive stochastic simulations. The goal of the present paper is to develop a novel deep-learning approach for solving high-dimensional CMEs by reformulating the stochastic dynamics using Kolmogorov's backward equation. The proposed method leverages superior approximation properties of Deep Neural Networks (DNNs) and is algorithmically based on reinforcement learning. It only requires a moderate number of stochastic simulations (in comparison to typical simulation-based approaches) to train the "policy function". This allows not just the numerical approximation of the CME solution but also of its sensitivities to all the reaction network parameters (e.g. rate constants). We provide four examples to illustrate our methodology and provide several directions for future research.


2021 ◽  
Author(s):  
Farida Ansari

Stochastic models of intracellular processes are subject of intense research today. For homogeneous systems, these models are based on the Chemical Master Equation, which is a discrete stochastic model. The Chemical Master Equation is often solved numerically using Gillespie’s exact stochastic simulation algorithm. This thesis studies the performance of another exact stochastic simulation strategy, which is based on the Random Time Change representation, and is more efficient for sensitivity analysis, compared to Gillespie’s algorithm. This method is tested on several models of biological interest, including an epidermal growth factor receptor model.


2021 ◽  
Author(s):  
Farida Ansari

Stochastic models of intracellular processes are subject of intense research today. For homogeneous systems, these models are based on the Chemical Master Equation, which is a discrete stochastic model. The Chemical Master Equation is often solved numerically using Gillespie’s exact stochastic simulation algorithm. This thesis studies the performance of another exact stochastic simulation strategy, which is based on the Random Time Change representation, and is more efficient for sensitivity analysis, compared to Gillespie’s algorithm. This method is tested on several models of biological interest, including an epidermal growth factor receptor model.


2021 ◽  
Vol 18 (178) ◽  
pp. 20210274
Author(s):  
Philipp Thomas ◽  
Vahid Shahrezaei

The chemical master equation and the Gillespie algorithm are widely used to model the reaction kinetics inside living cells. It is thereby assumed that cell growth and division can be modelled through effective dilution reactions and extrinsic noise sources. We here re-examine these paradigms through developing an analytical agent-based framework of growing and dividing cells accompanied by an exact simulation algorithm, which allows us to quantify the dynamics of virtually any intracellular reaction network affected by stochastic cell size control and division noise. We find that the solution of the chemical master equation—including static extrinsic noise—exactly agrees with the agent-based formulation when the network under study exhibits stochastic concentration homeostasis , a novel condition that generalizes concentration homeostasis in deterministic systems to higher order moments and distributions. We illustrate stochastic concentration homeostasis for a range of common gene expression networks. When this condition is not met, we demonstrate by extending the linear noise approximation to agent-based models that the dependence of gene expression noise on cell size can qualitatively deviate from the chemical master equation. Surprisingly, the total noise of the agent-based approach can still be well approximated by extrinsic noise models.


Sign in / Sign up

Export Citation Format

Share Document