caldera unrest
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Matías Clunes ◽  
John Browning ◽  
Carlos Marquardt ◽  
José Cembrano ◽  
Matías Villarroel ◽  
...  

<p>In the Atacama Desert, at the Precordillera of northern Chile, a series of Paleocene-Eocene caldera deposits and ring-faults are exceptionally well-preserved<sup>1</sup>. Here we aim to build on previous mapping efforts to consider the location, timing and style of pre, syn and post caldera volcanism in the region. We focus on the partially nested caldera complexes of Lomas Bayas and El Durazno<sup>2,3</sup> where deposits record several stages of caldera evolution (pre-collapse, collapse/intra-caldera and extra-caldera, resurgence and post-collapse eruptive deposits). The pre-caldera basement is a thick sequence of early Paleocene mafic lavas<sup>4, 5</sup>. The caldera complex formed between around 63 and 54 Ma<sup>4, 5</sup>. Both calderas constitute subcircular structures approximately 13 km in diameter and are cut by several NNW to NNE-trending felsic dikes which are spatially related to felsic domes interpreted as resulting from post caldera formation unrest<sup>1,</sup><sup>4</sup>. These calderas have been interpreted as part of the Carrizalillo megacaldera complex<sup>2 </sup>. We combine field observations, such as the attitude of dikes, as well as information on their dimension and composition, the size, location and composition of domes and lava flows, as well as the evidence of the regional stress field operating during the caldera evolution from measurements of fault kinematics. This data will be used as the input to finite element method models to investigate the effect of nested caldera geometry, ring-faults and crustal heterogeneities on the location of domes and eruptive centers generated during caldera unrest. The results will be potentially useful for constraining models of eruption forecasting during periods of unrest in calderas and ore deposition models which have been shown to be linked to caldera structure and magma emplacement.</p><p><strong>References</strong></p><p><sup>1 </sup>Rivera, O. and Falcón, M. (2000). Calderas tipo colapso-resurgentes del Terciario inferior en la Pre-Cordillera de la Región de Atacama: Emplazamiento de complejos volcano-plutónicos en las cuencas volcano-tectónicas extensionales Hornitos y Indio Muerto: IX Congreso Geológico Chileno, v. 2. Soc. Geol. de Chile, Puerto Varas.</p><p><sup>2 </sup>Rivera, O., and Mpodozis, C. (1994). La megacaldera Carrizalillo y sus calderas anidadas: Volcanismo sinextensional Cretácico Superior-Terciario inferior en la Precordillera de Copiapó, paper presented at VII Congreso Geológico Chileno. Acad. de Cienc. del Inst. Chilecol. de Geol. de Chile, Concepción.</p><p><sup>3 </sup>Rivera, O. (1992). El complejo volcano-plutónico Paleoceno-Eoceno del Cerro Durazno Alto: las calderas El Durazno y Lomas Bayas, Región de Atacama, Chile. Tesis Departamento de Geología, Universidad de Chile, 242. (Unpublished).</p><p><sup>4 </sup>Arévalo, C. (2005). Carta Los Loros, Región de Atacama. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, 92, 1(100.000), 53 p.</p><p><sup>5 </sup>Iriarte, S., Arévalo, C., Mpodozis, C. (1999). Mapa Geológico de la Hoja La Guardia, Región de Atacama. Servicio Nacional de Geología y Minería. Mapas Geológicos, 13, 1(100.000).</p>


2020 ◽  
Author(s):  
Theodoros Aspiotis ◽  
Ioannis Koutalonis ◽  
Georgios Michas ◽  
Filippos Valianatos

<p>Santorini's caldera being unrest during 2011-2012, led several studies to raise the important question of whether seismicity is associated with an impending and potential volcanic eruption or it solely relieves the accumulated tectonic energy. In the present work we study seismic coda waves generated by local earthquake events prior, during and after the seismic crisis that occurred within the caldera area. Coda waves are interpreted as scattered seismic waves generated by heterogeneities within the Earth, i.e. by faults, fractures, velocity and/or density boundaries and anomalies, etc. In particular, we utilize the three components of the seismograms recorded by three seismological stations on the island of Santorini and estimate the duration of the coda waves by implementing a three step procedure that includes the signal-to-noise ratio, the STA/LTA method and the short time Fourier transform. The final estimation was verified or reestimated manually due to the existent ambient seismic noise. Due to the nature and the path complexity of the coda waves and towards achieving a unified framework for the study of the immerse geo-structural seismotectonic complexity of the Santorini volcanic complex, we use Non-Extensive Statistical Physics (NESP) to study the probability distribution functions (pdfs) of the increments of seismic coda waves. NESP forms a generalization of the Boltzmann-Gibbs statistical mechanics, that has been extensively used for the analysis of semi-chaotic systems that exhibit long-range interactions, memory effects and multi-fractality. The analysis and results demonstrate that the seismic coda waves increments deviate from the Gaussian shape and their respective pdfs could adequately be described and processed by the q-Gaussian distribution. Furthermore and in order to investigate the dynamical structure of the volcanic-tectonic activity, we estimate the q-indices derived from the pdfs of the coda wave time series increments during the period 2009 - 2014 and present their variations as a function of time and as a function of the local magnitude (M<sub>L</sub>) of the events prior, during and after the caldera unrest.</p> <p> </p> <p><strong> Acknowledgments. </strong>We acknowledge support by the project “HELPOS – Hellenic System for Lithosphere Monitoring” (MIS 5002697) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece & European Union (ERDF)</p>


2020 ◽  
Author(s):  
Valerio Acocella

<p>Calderas often inflate up to a few metres for weeks to years, which is evidence of short-term unrest. Some calderas also show larger uplift (up to a thousand metres), achieved over the long-term (hundreds to thousands of years), manifest by a resurgent dome or block. How the short-term inflation relates to long-term resurgence is still poorly understood, even though established views consider the two processes distinct. This study exploits the longer deformation time series now available for several calderas, as well as the better understanding of magmatic processes and their evolution, to try to bridge the gap between these two scales of uplift. Available data challenge established views, suggesting that resurgence, rather than being produced by constant or continuous uplift, is the net cumulated result of tens to thousands distinct episodes of inflation, even interrupted by deflation episodes, as observed on short-term unrest. These inflation episodes are ascribed to distinct pulses of shallow magma emplacement, with most of the magma remaining intruded, especially in felsic calderas. This supports an incremental growth of magmatic systems, consistently with that observed below resurgent calderas and what is inferred for plutons. Comparing the uplift (as expression of the intrusive record) and eruptive histories or resurgent calderas opens new exciting research paths to understand the causal relationships between intruded and erupted magma at a given caldera, thus enhancing its long-term eruptive forecast.</p>


2019 ◽  
Vol 20 (11) ◽  
pp. 5544-5555 ◽  
Author(s):  
F. Giudicepietro ◽  
G. Chiodini ◽  
S. Caliro ◽  
W. De Cesare ◽  
A. M. Esposito ◽  
...  

2019 ◽  
Vol 188 ◽  
pp. 108-122 ◽  
Author(s):  
Claudia Troise ◽  
Giuseppe De Natale ◽  
Roberto Schiavone ◽  
Renato Somma ◽  
Roberto Moretti

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
R. Moretti ◽  
C. Troise ◽  
F. Sarno ◽  
G. De Natale

2018 ◽  
Vol 80 (4) ◽  
Author(s):  
M. Berrocoso ◽  
G. Prates ◽  
A. Fernández-Ros ◽  
L. M. Peci ◽  
A. de Gil ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Luca De Siena ◽  
Giovanni Chiodini ◽  
Giuseppe Vilardo ◽  
Edoardo Del Pezzo ◽  
Mario Castellano ◽  
...  

2017 ◽  
Vol 18 (7) ◽  
pp. 2748-2768 ◽  
Author(s):  
Laura Sandri ◽  
Valerio Acocella ◽  
Chris Newhall
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document