deposition models
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 24)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Alessio Suman ◽  
Alessandro Vulpio ◽  
Nicola Casari ◽  
Michele Pinelli

Abstract Natural events and human activities are responsible for the generation and transport of large amounts of micro-sized particles, which could contaminate several engineering devices like solar panels, wind turbines, and aero-engines. In industrial processes, systems as heat exchangers, fans, and dust collectors are continuously affected by nanoparticles' interaction. For several applications, the adhesion of such nanoparticles is detrimental, generating safety and performance issues. Particle-to-particle and particle-to-surface interactions are well known, even if a general explanation of nanoparticle deposit growth is still unknown. In the present paper, an interpretation of deposit growth due to nanoparticle deposition can predict particle adhesion, and layer accretion is proposed. A statistical model and a set of coefficients are used to generalize nanoparticle deposits' growth by an S-shaped function. In particular, the nanoparticle deposits grow analogously to a typical autonomous population settlement in a virgin area following statistical rule, which includes the initial growth, the successive stable condition (development), and catastrophic events able to destroy the layer. This approach generalizes nanoparticle adhesion/deposition behavior, overpassing the constraints reported in common deposition models, mainly focused on the mechanical aspect of the nanoparticle impact event. The catastrophic events, such as layer detachment, are modeled with a Poisson's distribution, related to material characteristics and impact conditions. This innovative approach, analogies, and coefficients applied to common engineering applications may be the starting point for improving the prediction capability of nanoparticle deposition.


2021 ◽  
Author(s):  
Alessio Suman ◽  
Alessandro Vulpio ◽  
Nicola Casari ◽  
Michele Pinelli

Abstract Natural events and human activities are responsible for the generation and transport of large amounts of micro-sized particles, which could contaminate several engineering devices like solar panels, wind turbines, and aero-engines. In industrial processes, systems as heat exchangers, fans, and dust collectors are continuously affected by nanoparticles’ interaction. For several applications, the adhesion of such nanoparticles is detrimental, generating safety and performance issues. Particle-to-particle and particle-to-surface interactions are well known, even if a general explanation of nanoparticle deposit growth is still unknown. In the present paper, an interpretation of deposit growth due to nanoparticle deposition can predict particle adhesion, and layer accretion is proposed. A statistical model and a set of coefficients are used to generalize nanoparticle deposits’ growth by an S-shaped function. In particular, the nanoparticle deposits grow analogously to a typical autonomous population settlement in a virgin area following statistical rule, which includes the initial growth, the successive stable condition (development), and catastrophic events able to destroy the layer. This approach generalizes nanoparticle adhesion/deposition behavior, overpassing the constraints reported in common deposition models, mainly focused on the mechanical aspect of the nanoparticle impact event. The catastrophic events, such as layer detachment, are modeled with a Poisson’s distribution, related to material characteristics and impact conditions. This innovative approach, analogies, and coefficients applied to common engineering applications may be the starting point for improving the prediction capability of nanoparticle deposition.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 81
Author(s):  
Alessandro Vulpio ◽  
Alessio Suman ◽  
Nicola Casari ◽  
Michele Pinelli

Helicopters often operate in dusty sites, ingesting huge amounts of contaminants during landing, take-off, hover-taxi, and ground operations. In specific locations, the downwash of the rotor may spread soil particles from the ground into the environment and, once ingested by the engine, may stick to the compressor airfoils. In the present work, the Allison 250 C18 engine’s multistage axial-flow compressor is employed to study the fouling rate on rotor blades and stator vanes from both numerical and experimental standpoints. The compressor is operated in a typical ground-idle operation, in terms of the rotational regime and contaminant concentration, in laboratory-controlled conditions. The mass of deposits is collected from the airfoil surfaces at the end of the test and compared to that estimated through the numerical model. The experimental test shows that the airfoils collect almost 1.6% of the engine’s total mass ingested during a ground-idle operation. The capability of numerical methods to predict the fouling rate on the rotating and stationary airfoils of a multistage compressor is tested through the implementation of literature based deposition models. Sticking models show a good agreement in terms of the relative results; nevertheless, an overestimation of the deposited mass predicted is observed.


2021 ◽  
Author(s):  
Matías Clunes ◽  
John Browning ◽  
Carlos Marquardt ◽  
José Cembrano ◽  
Matías Villarroel ◽  
...  

<p>In the Atacama Desert, at the Precordillera of northern Chile, a series of Paleocene-Eocene caldera deposits and ring-faults are exceptionally well-preserved<sup>1</sup>. Here we aim to build on previous mapping efforts to consider the location, timing and style of pre, syn and post caldera volcanism in the region. We focus on the partially nested caldera complexes of Lomas Bayas and El Durazno<sup>2,3</sup> where deposits record several stages of caldera evolution (pre-collapse, collapse/intra-caldera and extra-caldera, resurgence and post-collapse eruptive deposits). The pre-caldera basement is a thick sequence of early Paleocene mafic lavas<sup>4, 5</sup>. The caldera complex formed between around 63 and 54 Ma<sup>4, 5</sup>. Both calderas constitute subcircular structures approximately 13 km in diameter and are cut by several NNW to NNE-trending felsic dikes which are spatially related to felsic domes interpreted as resulting from post caldera formation unrest<sup>1,</sup><sup>4</sup>. These calderas have been interpreted as part of the Carrizalillo megacaldera complex<sup>2 </sup>. We combine field observations, such as the attitude of dikes, as well as information on their dimension and composition, the size, location and composition of domes and lava flows, as well as the evidence of the regional stress field operating during the caldera evolution from measurements of fault kinematics. This data will be used as the input to finite element method models to investigate the effect of nested caldera geometry, ring-faults and crustal heterogeneities on the location of domes and eruptive centers generated during caldera unrest. The results will be potentially useful for constraining models of eruption forecasting during periods of unrest in calderas and ore deposition models which have been shown to be linked to caldera structure and magma emplacement.</p><p><strong>References</strong></p><p><sup>1 </sup>Rivera, O. and Falcón, M. (2000). Calderas tipo colapso-resurgentes del Terciario inferior en la Pre-Cordillera de la Región de Atacama: Emplazamiento de complejos volcano-plutónicos en las cuencas volcano-tectónicas extensionales Hornitos y Indio Muerto: IX Congreso Geológico Chileno, v. 2. Soc. Geol. de Chile, Puerto Varas.</p><p><sup>2 </sup>Rivera, O., and Mpodozis, C. (1994). La megacaldera Carrizalillo y sus calderas anidadas: Volcanismo sinextensional Cretácico Superior-Terciario inferior en la Precordillera de Copiapó, paper presented at VII Congreso Geológico Chileno. Acad. de Cienc. del Inst. Chilecol. de Geol. de Chile, Concepción.</p><p><sup>3 </sup>Rivera, O. (1992). El complejo volcano-plutónico Paleoceno-Eoceno del Cerro Durazno Alto: las calderas El Durazno y Lomas Bayas, Región de Atacama, Chile. Tesis Departamento de Geología, Universidad de Chile, 242. (Unpublished).</p><p><sup>4 </sup>Arévalo, C. (2005). Carta Los Loros, Región de Atacama. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, 92, 1(100.000), 53 p.</p><p><sup>5 </sup>Iriarte, S., Arévalo, C., Mpodozis, C. (1999). Mapa Geológico de la Hoja La Guardia, Región de Atacama. Servicio Nacional de Geología y Minería. Mapas Geológicos, 13, 1(100.000).</p>


Palaios ◽  
2021 ◽  
Vol 36 (2) ◽  
pp. 53-67
Author(s):  
NIKLAS HOHMANN

ABSTRACT Stratigraphic changes in the clustering of first or last taxon occurrences are a joint expression of evolutionary, ecological, taphonomic, and sedimentological processes. Sedimentation rates control the degree of sedimentary dilution and condensation and thus alter the time contained in a given thickness of sediment. However, it remains poorly explored quantitatively how distinct the stratigraphic patterns in the first and last occurrences can be under different deposition models with a constant thickness of accumulated sediment. Here, I present an algorithm that translates ecological or evolutionary signals between time and stratigraphic height. It is implemented for R Software as the package DAIME and complemented by tools to quantify the uncertainties associated with the construction of deposition models. By modeling the stratigraphic expression of the K/Pg extinction and an earlier extinction pulse potentially linked to Deccan volcanism on Seymour Island under varying sedimentation rates, I show that (1) clustering of last occurrences ∼ 250 kyr prior to the K/Pg boundary can be equally explained by a stronger earlier extinction pulse or prolonged intervals with reduced sediment accumulation rate, but (2) when the temporal variability in sedimentation rate is known, the most plausible extinction dynamics can still be identified. The approach is applicable for any type of information transported as a part of the sedimentary record (e.g., fossils or trace elements) or data derived from it (e.g., isotope ratios and rates of morphological evolution).


Author(s):  
Wilfred Kwabena Darko ◽  
Federico Lozano Santamaria ◽  
Laurent Bouvier ◽  
Guillaume Delaplace ◽  
Sandro Macchietto

Ecosystems ◽  
2020 ◽  
Author(s):  
Marina Roth ◽  
Hans-Gerhard Michiels ◽  
Heike Puhlmann ◽  
Carina Sucker ◽  
Maria-Barbara Winter ◽  
...  

AbstractEutrophication due to increased nitrogen concentrations is known to alter species composition and threaten sensitive habitat types. The contribution of atmospheric nitrogen deposition to eutrophication is often difficult to determine. Various deposition models have been developed to estimate the amount of nitrogen deposited for both entire regions and different landscape surface types. The question arises whether the resulting deposition maps allow direct conclusions about the risk of eutrophication-related changes in the understory vegetation composition and diversity in nitrogen-sensitive forest ecosystems. We combined vegetation and soil data recorded across eutrophication gradients in ten oligo-mesotrophic forest types in southwest Germany with datasets from two different deposition models specifically fitted for forests in our study region. Altogether, 153 forest stands, with three sampling replicates each, were examined. Linear mixed-effect models and NMDS analyses revealed that other site factors, in particular the soil C/N ratio, soil pH and canopy cover, played a greater role in explaining vegetation gradients than nitrogen deposition. The latter only rarely had effects on species richness (positive), nitrophyte cover (positive or negative) and the cover of sensitive character species (negative). These effects varied depending on the deposition model used and the forest types examined. No effects of nitrogen deposition on average Ellenberg N values were found. The results reflect the complex situation in forests where nitrogen availability is not only influenced by deposition but also by nitrogen mineralization and retention which depend on soil type, pH and (micro)climate. This context dependency must be regarded when evaluating the effects of nitrogen deposition.


Sign in / Sign up

Export Citation Format

Share Document