fault kinematics
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 32)

H-INDEX

23
(FIVE YEARS 1)

Author(s):  
Faqi Diao ◽  
Rongjiang Wang ◽  
Yage Zhu ◽  
Xiong Xiong

Abstract Based on a viscoelastic earthquake-cycle deformation model, we revisit the fault locking of the central Himalayan thrust using geodetic data acquired in the past three decades. By incorporating the viscoelastic relaxation effect induced by stress buildup and release, our viscoelastic model is capable of explaining the far-field observation with similar fault locking width obtained in previous studies. Elastic models underestimate the far-field deformation and consequently underestimate the fault slip rate by attributing the far-field deformation to stable intraplate deformation. A steady-state viscosity of ∼1019  Pa·s is required for the lower crust beneath south Tibet to best fit the crustal velocity. The optimal slip rate and locking width of the central Main Himalayan Thrust are estimated to 18.8 ± 1.6 mm/a and 85 ± 2.1 km, respectively. The inferred fault locking width, along with the down-dip rupture extension of the 2015 Gorkha earthquake, agrees well with the identified mid-crustal ramp, which leads to an interpretation that the fault geometry of the central Himalayan thrust plays an important role on fault kinematics. Our results highlight that viscoelastic relaxation during the earthquake cycle should be incorporated for robust estimation of fault locking parameters and reasonable data fitting.


2021 ◽  
Vol 14 (10) ◽  
pp. 6197-6213
Author(s):  
Lachlan Grose ◽  
Laurent Ailleres ◽  
Gautier Laurent ◽  
Guillaume Caumon ◽  
Mark Jessell ◽  
...  

Abstract. Without properly accounting for both fault kinematics and observations of a faulted surface, it is challenging to create 3D geological models of faulted geological units. Geometries where multiple faults interact, where the faulted surface geometry significantly deviate from a flat plane and where the geological interfaces are poorly characterised by sparse datasets are particular challenges. There are two existing approaches for incorporating faults into geological surface modelling. One approach incorporates the fault displacement into the surface description but does not incorporate fault kinematics and in most cases will produce geologically unexpected results such as shrinking intrusions, fold hinges without offset and layer thickness growth in flat oblique faults. The second approach builds a continuous surface without faulting and then applies a kinematic fault operator to the continuous surface to create the displacement. Both approaches have their strengths; however, neither approach can capture the interaction of faults within complicated fault networks, e.g. fault duplexes, flower structures and listric faults because they either (1) impose an incorrect (not defined by data) fault slip direction or (2) require an over-sampled dataset that describes the faulted surface location. In this study, we integrate the fault kinematics into the implicit surface, by using the fault kinematics to restore observations, and the model domain prior to interpolating the faulted surface. This new approach can build models that are consistent with observations of the faulted surface and fault kinematics. Integrating fault kinematics directly into the implicit surface description allows for complexly faulted stratigraphy and fault–fault interactions to be modelled. Our approach shows significant improvement in capturing faulted surface geometries, especially where the intersection angle between the faulted surface and the fault surface varies (e.g. intrusions, fold series) and when modelling interacting faults (fault duplex).


Geology ◽  
2021 ◽  
Author(s):  
J.M. Davis ◽  
P.M. Grindrod ◽  
S.G. Banham ◽  
N.H. Warner ◽  
S.J. Conway ◽  
...  

On Mars, basins formed by tectonic processes are rare and mostly have unconstrained subsidence histories. One method for understanding this record of subsidence is through associated alluvial fans, which are sourced from uplifted areas and accumulate in downthrown basins. The source, morphology, and superposition of fan deposits can be used to reconstruct fault kinematics, the relative timing of accommodation space formation, and, in turn, the influence tectonic processes had on Martian fan formation. Here we use high-resolution orbital data sets to characterize sediment fan deposits associated with syn-tectonic sedimentation in two regions of the Valles Marineris canyons: Coprates Chasma and Juventae Chasma. These deposits comprise sediment fans on the current canyon floor and low-gradient surfaces perched several kilometers above the canyon floor. We interpret the low-gradient surfaces as remnant sediment fan deposits, which originally formed at the former canyon floor and have since been offset due to normal faulting. The preservation of vertically offset generations of sediment fan deposits supports a progressive, basinward migration of fault activity into the original hanging wall or repeat activity along a fault zone. Each episode of faulting was followed by a basinward shift in drainages, which led to fault-scarp degradation and formation of a new generation of fans. Multiple episodes of syn-tectonic sedimentation occurred during the evolution of the basins, with fluvial activity sporadically active. Our results demonstrate, for the first time on Mars, that depositional cyclicity was linked to tectonic deformation, possibly representative of regional processes throughout Valles Marineris.


2021 ◽  
Vol 9 ◽  
Author(s):  
Melissa O. Anderson ◽  
Chantal Norris-Julseth ◽  
Kenneth H. Rubin ◽  
Karsten Haase ◽  
Mark D. Hannington ◽  
...  

The transition from subduction to transform motion along horizontal terminations of trenches is associated with tearing of the subducting slab and strike-slip tectonics in the overriding plate. One prominent example is the northern Tonga subduction zone, where abundant strike-slip faulting in the NE Lau back-arc basin is associated with transform motion along the northern plate boundary and asymmetric slab rollback. Here, we address the fundamental question: how does this subduction-transform motion influence the structural and magmatic evolution of the back-arc region? To answer this, we undertake the first comprehensive study of the geology and geodynamics of this region through analyses of morphotectonics (remote-predictive geologic mapping) and fault kinematics interpreted from ship-based multibeam bathymetry and Centroid-Moment Tensor data. Our results highlight two notable features of the NE Lau Basin: 1) the occurrence of widely distributed off-axis volcanism, in contrast to typical ridge-centered back-arc volcanism, and 2) fault kinematics dominated by shallow-crustal strike slip-faulting (rather than normal faulting) extending over ∼120 km from the transform boundary. The orientations of these strike-slip faults are consistent with reactivation of earlier-formed normal faults in a sinistral megashear zone. Notably, two distinct sets of Riedel megashears are identified, indicating a recent counter-clockwise rotation of part of the stress field in the back-arc region closest to the arc. Importantly, the Riedel structures identified in this study directly control the development of complex volcanic-compositional provinces, which are characterized by variably-oriented spreading centers, off-axis volcanic ridges, extensive lava flows, and point-source rear-arc volcanoes. This study adds to our understanding of the geologic and structural evolution of modern backarc systems, including the association between subduction-transform motions and the siting and style of seafloor volcanism.


2021 ◽  
Author(s):  
Lachlan Grose ◽  
Laurent Ailleres ◽  
Gautier Laurent ◽  
Guillaume Caumon ◽  
Mark Jessell ◽  
...  

Abstract. Without properly accounting for both fault kinematics and faulted surface observations, it is challenging to create 3D geological models of faulted geological units that are seen in all tectonic settings. Geometries where multiple faults interact, where the faulted surface geometry significantly deviate from a flat plane and where the geological interfaces are poorly characterised by sparse data sets are particular challenges. There are two existing approaches for incorporating faults into geological surface modelling: one approach incorporates the fault displacement into the surface description but does not incorporate fault kinematics and in most cases will produce geologically unexpected results such as shrinking intrusions, fold hinges without offset and layer thickness growth in flat oblique faults. Another approach builds a continuous surface without faulting and then applies a kinematic fault operator to the continuous surface to create the displacement. Both approaches have their strengths, however neither approach can capture the interaction of faults within complicated fault networks e.g fault duplexes, flower structures and listric faults because they either \\begin{inparaenum}[(1)] \\item impose an incorrect (not defined by data) fault slip direction; or \\item require an over sampled data set that describes the faulted surface location\\end{inparaenum}. In this study we integrate the fault kinematics into the implicit surface by using the fault kinematic model to restore observations and the model domain prior to interpolating the faulted surface. This approach can build models that are consistent with observations of the faulted surface and fault kinematics. Integrating fault kinematics directly into the implicit surface description allows for complex fault stratigraphy and fault-fault interactions to be modelled. Our approaches show significant improvement in capturing faulted surface geometries especially where the intersection angle between the faulted surface geometry and the fault surface varies (e.g. intrusions, fold series) and when modelling interacting faults (fault duplex).


2021 ◽  
Author(s):  
Yogendra Sharma ◽  
Sumanta Pasari ◽  
Kuo-En Ching

Abstract Using an updated set of GPS surface velocities, the present study provides fault locking behavior and slip rate distribution of the Main Himalayan Thrust (MHT) along the central Himalaya. The two-dimensional velocity field is inverted through Bayesian inversion to estimate fault geometry and kinematic parameters of the MHT along the central Himalaya. The modeling results reveal that: (1) MHT is fully locked in the upper flat (0-9 km), partially locked along the mid-crustal ramp (15-21 km), and it is creeping in the deeper flat (> 21 km); (2) there is an insignificant slip rate of MHT along the locked-to-creeping transition zone, indicating its partially coupled/locked behavior; (3) along the deeper flat of the MHT, the estimated creeping rate is ~16.3 mm/yr, ~14.7 mm/yr, and ~14.3 mm/yr along western, central, and eastern Nepal, respectively; and (4) along the MHT on the upper crust, the modeled locking width turns out to be 97 km, 106 km, and 129 km in the western, central, and eastern Nepal, respectively. In addition, the posterior probability distribution of the locking width exhibits a bimodal Gaussian distribution coinciding with the two ramp geometry of the MHT along the western Nepal. Along the foothills of the Higher Himalaya, the inferred locking line is also aligned to the estimated maximum shear strain concentration and observed seismicity along the central Himalaya. With a general agreement to the previous geodetic results, geological estimates, and background seismicity, our findings provide a promising avenue of the contemporary crustal deformation along the Nepal Himalaya. The estimated inversion results in a Bayesian framework exhibit updated fault kinematics of the MHT and hence provides valuable inputs for seismic hazard assessment along the central Himalaya.


Tectonics ◽  
2021 ◽  
Author(s):  
Bailey A. Lathrop ◽  
Christopher A.‐L Jackson ◽  
Rebecca E. Bell ◽  
Atle Rotevatn

2021 ◽  
Author(s):  
Matías Clunes ◽  
John Browning ◽  
Carlos Marquardt ◽  
José Cembrano ◽  
Matías Villarroel ◽  
...  

<p>In the Atacama Desert, at the Precordillera of northern Chile, a series of Paleocene-Eocene caldera deposits and ring-faults are exceptionally well-preserved<sup>1</sup>. Here we aim to build on previous mapping efforts to consider the location, timing and style of pre, syn and post caldera volcanism in the region. We focus on the partially nested caldera complexes of Lomas Bayas and El Durazno<sup>2,3</sup> where deposits record several stages of caldera evolution (pre-collapse, collapse/intra-caldera and extra-caldera, resurgence and post-collapse eruptive deposits). The pre-caldera basement is a thick sequence of early Paleocene mafic lavas<sup>4, 5</sup>. The caldera complex formed between around 63 and 54 Ma<sup>4, 5</sup>. Both calderas constitute subcircular structures approximately 13 km in diameter and are cut by several NNW to NNE-trending felsic dikes which are spatially related to felsic domes interpreted as resulting from post caldera formation unrest<sup>1,</sup><sup>4</sup>. These calderas have been interpreted as part of the Carrizalillo megacaldera complex<sup>2 </sup>. We combine field observations, such as the attitude of dikes, as well as information on their dimension and composition, the size, location and composition of domes and lava flows, as well as the evidence of the regional stress field operating during the caldera evolution from measurements of fault kinematics. This data will be used as the input to finite element method models to investigate the effect of nested caldera geometry, ring-faults and crustal heterogeneities on the location of domes and eruptive centers generated during caldera unrest. The results will be potentially useful for constraining models of eruption forecasting during periods of unrest in calderas and ore deposition models which have been shown to be linked to caldera structure and magma emplacement.</p><p><strong>References</strong></p><p><sup>1 </sup>Rivera, O. and Falcón, M. (2000). Calderas tipo colapso-resurgentes del Terciario inferior en la Pre-Cordillera de la Región de Atacama: Emplazamiento de complejos volcano-plutónicos en las cuencas volcano-tectónicas extensionales Hornitos y Indio Muerto: IX Congreso Geológico Chileno, v. 2. Soc. Geol. de Chile, Puerto Varas.</p><p><sup>2 </sup>Rivera, O., and Mpodozis, C. (1994). La megacaldera Carrizalillo y sus calderas anidadas: Volcanismo sinextensional Cretácico Superior-Terciario inferior en la Precordillera de Copiapó, paper presented at VII Congreso Geológico Chileno. Acad. de Cienc. del Inst. Chilecol. de Geol. de Chile, Concepción.</p><p><sup>3 </sup>Rivera, O. (1992). El complejo volcano-plutónico Paleoceno-Eoceno del Cerro Durazno Alto: las calderas El Durazno y Lomas Bayas, Región de Atacama, Chile. Tesis Departamento de Geología, Universidad de Chile, 242. (Unpublished).</p><p><sup>4 </sup>Arévalo, C. (2005). Carta Los Loros, Región de Atacama. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, 92, 1(100.000), 53 p.</p><p><sup>5 </sup>Iriarte, S., Arévalo, C., Mpodozis, C. (1999). Mapa Geológico de la Hoja La Guardia, Región de Atacama. Servicio Nacional de Geología y Minería. Mapas Geológicos, 13, 1(100.000).</p>


2021 ◽  
Author(s):  
Matthew S. Tarling ◽  
Steven A.F. Smith ◽  
Jeremy S. Rooney ◽  
Cecilia Viti ◽  
Keith C. Gordon

<p>Serpentine veins are ubiquitous in hydrated and deformed ultramafic rocks, and have previously been used to track fault kinematics and understand the evolution of environmental conditions during vein formation. However, difficulties in unambiguously identifying and mapping serpentine types at sub-micron to mm scales has limited our understanding of vein precipitation kinetics and growth histories. Using recently developed techniques of Raman spectroscopy mapping, combined with scanning- and transmission-electron microscopy, we describe a new type of mineralogically banded serpentine crack-seal vein in six samples from different settings around the world. In all of the studied samples, individual bands comprise a thin layer (~0.4–2 µm) dominated by chrysotile and a much thicker layer (~0.5–30 µm) dominated by polygonal serpentine/lizardite. Existing field and experimental data suggest that disequilibrium conditions immediately following crack opening may favour rapid precipitation of chrysotile along one of the crack margins. Subsequently, diffusional transport of elements favours slower precipitation of polygonal serpentine/lizardite which leads to crack sealing. The similarities in layer thicknesses and mineralogy exhibited by samples collected from extension and shear veins, dilational jogs, foliation surfaces, and the margins of phacoids, suggest that a common set of processes involving crack opening and sealing are active in a range of different structural sites within serpentinite-dominated shear zones, potentially associated with frequent and repetitive stress drops such as those recorded during episodic tremor and slow slip.</p>


Sign in / Sign up

Export Citation Format

Share Document