maize coleoptile
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 2)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 22 (9) ◽  
pp. 5017
Author(s):  
Małgorzata Polak ◽  
Waldemar Karcz

The fungal toxin fusicoccin (FC) induces rapid cell elongation, proton extrusion and plasma membrane hyperpolarization in maize coleoptile cells. Here, these three parameters were simultaneously measured using non-abraded and non-peeled segments with the incubation medium having access to their lumen. The dose–response curve for the FC-induced growth was sigmoidal shaped with the maximum at 10−6 M over 10 h. The amplitudes of the rapid growth and proton extrusion were significantly higher for FC than those for indole-3-acetic acid (IAA). The differences between the membrane potential changes that were observed in the presence of FC and IAA relate to the permanent membrane hyperpolarization for FC and transient hyperpolarization for IAA. It was also found that the lag times of the rapid growth, proton extrusion and membrane hyperpolarization were shorter for FC compared to IAA. At 30 °C, the biphasic kinetics of the IAA-induced growth rate could be changed into a monophasic (parabolic) one, which is characteristic for FC-induced rapid growth. It has been suggested that the rates of the initial phase of the FC- and IAA-induced growth involve two common mechanisms that consist of the proton pumps and potassium channels whose contribution to the action of both effectors on the rapid growth is different.


2019 ◽  
Vol 20 (7) ◽  
pp. 1788 ◽  
Author(s):  
Małgorzata Rudnicka ◽  
Michał Ludynia ◽  
Waldemar Karcz

Naphthoquinones, plants secondary metabolites are known for their antibacterial, antifungal, anti-inflammatory, anti-cancer and anti-parasitic properties. The biological activity of naphthoquinones is connected with their ability to generate reactive oxygen species and to modify biological molecules at their nucleophilic sites. In our research, the effect of naphthazarin (DHNQ) combined with 2-hydroxy-1,4-naphthoquinone (NQ-2-OH) or 1,4-naphthoquinone (1,4-NQ) on the elongation growth, pH changes of the incubation medium, oxidative stress and redox activity of maize coleoptile cells were investigated. This paper describes experiments performed with maize (Zea mays L.) coleoptile segments, which is a classical model system to study plant cell elongation growth. The data presented clearly demonstrate that lawsone and 1,4-naphthoquinone combined with naphthazarin, at low concentrations (1 and 10 nM), reduced the endogenous and IAA-induced (Indole-3-Acetic Acid) elongation growth of maize coleoptile segments. Those changes in growth correlated with the proton concentration in the incubation medium, which suggests that the changes in the growth of maize coleoptile segments observed in the presence of naphthoquinones are mediated through the activity of PM H+-ATPase. The presence of naphthoquinones induced oxidative stress in the maize coleoptile tissue by producing hydrogen peroxide and causing changes in the redox activity. Moreover, the incubation of maize segments with both naphthoquinones combined with naphthazarin resulted in lipid peroxidation and membrane damage. The regulation of PM H+-ATPase activity, especially its inhibition, may result from two major types of reaction: first, a direct interaction between an enzyme and naphthoquinone, which leads to the covalent modification of the protein thiols and the generation of thioethers, which have been found to alter the activity of the PM H+-ATPases; second, naphthoquinones induce reactive oxygen species (ROS) production, which inhibits PM H+-ATPases by increasing cytosolic Ca2+. This harmful effect was stronger when naphthazarin and 1,4-naphthoquinone were added together. Taking these results into account, it can be suggested that by combining naphthoquinones in small quantities, an alternative to synthetic pesticides could be developed.


AoB Plants ◽  
2016 ◽  
Vol 8 ◽  
pp. plw073 ◽  
Author(s):  
Renata Kurtyka ◽  
Wojciech Pokora ◽  
Zbigniew Tukaj ◽  
Waldemar Karcz

2014 ◽  
Vol 114 (5) ◽  
pp. 1023-1034 ◽  
Author(s):  
Zbigniew Burdach ◽  
Renata Kurtyka ◽  
Agnieszka Siemieniuk ◽  
Waldemar Karcz

2014 ◽  
Vol 53 (3) ◽  
pp. 353-362 ◽  
Author(s):  
Ewa Raczek

The effect of natural (IAA, FC, ABA) and synthetic (2,4-D) growth substances on the increase of the fresh weight of maize coleoptile segments and change of the pH of the incubation medium, accepted here as criteria of maize coleoptile growth, was studied. The growth of maize coleoptiles depended on the concentration of the growth substances, as well as, on the composition of the incubation medium. The highest stimulation of coleoptile growth was seen with FC at a concentration of 10<sup>-4</sup>M, whereas ABA at 10<sup>-3</sup> M gave the highest inhibition of maize coleoptile fresh weight increase and caused alkalization of the medium. The presence of K<sup>+</sup> ions in the incubation medium enhanced the stimulatory effect of IAA and FC on the increase of the coleoptile fresh weight, whereas the presence of these ions and phosphate buffer abolished the growth-promoting effect of IAA and FC. The best correlation of the "fresh weight" and "pH" effects was found in the case of the growth of maize coleoptiles in the presence of FC (r<sub>xy</sub> = 0.67). The inhibition of maize coleoptile growth in the presence of high concentrations of IAA can be explained by the destructive effect of natural auxin at these concentrations on the integrity of mitochondrial membranes, and therefore on the normal functioning of mitochondria.


2013 ◽  
Vol 35 (7) ◽  
pp. 2183-2191 ◽  
Author(s):  
Andrei Lipchinsky ◽  
Elena I. Sharova ◽  
Sergey S. Medvedev

Sign in / Sign up

Export Citation Format

Share Document