private comparison
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 56)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Xi Huang ◽  
Yan Chang ◽  
Wen Cheng ◽  
Min Hou ◽  
Shi-Bin Zhang

Abstract In this paper, by using swap test, a quantum private comparison (QPC) protocol of arbitrary single qubit states with a semi-honest third party is proposed. The semi-honest third party (TP) is required to help two participants perform the comparison. She can record intermediate results and do some calculations in the whole process of the protocol execution, but she cannot conspire with any participants. In the process of comparison, TP cannot get two participants' private information except the comparison results. According to the security analysis, the proposed protocol can resist both outsider attacks and participant attacks. Compared with the existing QPC protocols, the proposed one does not require any entanglement swapping technology, and it can compare two participants' qubits by performing swap test, which is easier to implement with current technology. Meanwhile, the proposed protocol can compare secret integers. It encodes secret integers into the amplitude of quantum state rather than transfer them as binary representations, and the encoded quantum state is compared by performing swap test. Additionally, the proposed QPC protocol is extended to the QPC of arbitrary single qubit states by using multi-qubit swap test.


2021 ◽  
Vol 2022 (1) ◽  
pp. 291-316
Author(s):  
Théo Ryffel ◽  
Pierre Tholoniat ◽  
David Pointcheval ◽  
Francis Bach

Abstract We propose AriaNN, a low-interaction privacy-preserving framework for private neural network training and inference on sensitive data. Our semi-honest 2-party computation protocol (with a trusted dealer) leverages function secret sharing, a recent lightweight cryptographic protocol that allows us to achieve an efficient online phase. We design optimized primitives for the building blocks of neural networks such as ReLU, MaxPool and BatchNorm. For instance, we perform private comparison for ReLU operations with a single message of the size of the input during the online phase, and with preprocessing keys close to 4× smaller than previous work. Last, we propose an extension to support n-party private federated learning. We implement our framework as an extensible system on top of PyTorch that leverages CPU and GPU hardware acceleration for cryptographic and machine learning operations. We evaluate our end-to-end system for private inference between distant servers on standard neural networks such as AlexNet, VGG16 or ResNet18, and for private training on smaller networks like LeNet. We show that computation rather than communication is the main bottleneck and that using GPUs together with reduced key size is a promising solution to overcome this barrier.


2021 ◽  
Vol 20 (11) ◽  
Author(s):  
Yuan Tian ◽  
Jian Li ◽  
Xiu-Bo Chen ◽  
Chong-Qiang Ye ◽  
Chao-Yang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document