size relation
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 25)

H-INDEX

32
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Sarafa A. Iyaniwura ◽  
Musa Rabiu ◽  
Jummy F. David ◽  
Jude D. Kong

AbstractAdherence to public health policies such as the non-pharmaceutical interventions implemented against COVID-19 plays a major role in reducing infections and controlling the spread of the diseases. In addition, understanding the transmission dynamics of the disease is also important in order to make and implement efficient public health policies. In this paper, we developed an SEIR-type compartmental model to assess the impact of adherence to COVID-19 non-pharmaceutical interventions and indirect transmission on the dynamics of the disease. Our model considers both direct and indirect transmission routes and stratifies the population into two groups: those that adhere to COVID-19 non-pharmaceutical interventions (NPIs) and those that do not adhere to the NPIs. We compute the control reproduction number and the final epidemic size relation for our model and study the effect of different parameters of the model on these quantities. Our results show that direct transmission has more effect on the reproduction number and final epidemic size, relative to indirect transmission. In addition, we showed that there is a significant benefit in adhering to the COVID-19 NPIs.


Author(s):  
Sampath Mukherjee ◽  
Léon V E Koopmans ◽  
R Benton Metcalf ◽  
Cresenzo Tortora ◽  
Matthieu Schaller ◽  
...  

Abstract We use nine different galaxy formation scenarios in ten cosmological simulation boxes from the EAGLE suite of ΛCDM hydrodynamical simulations to assess the impact of feedback mechanisms in galaxy formation and compare these to observed strong gravitational lenses. To compare observations with simulations, we create strong lenses with M* > 1011 M⊙ with the appropriate resolution and noise level, and model them with an elliptical power-law mass model to constrain their total mass density slope. We also obtain the mass-size relation of the simulated lens-galaxy sample. We find significant variation in the total mass density slope at the Einstein radius and in the projected stellar mass-size relation, mainly due to different implementations of stellar and AGN feedback. We find that for lens selected galaxies, models with either too weak or too strong stellar and/or AGN feedback fail to explain the distribution of observed mass-density slopes, with the counter-intuitive trend that increasing the feedback steepens the mass density slope around the Einstein radius (≈ 3-10 kpc). Models in which stellar feedback becomes inefficient at high gas densities, or weaker AGN feedback with a higher duty cycle, produce strong lenses with total mass density slopes close to isothermal (i.e. −dlog (ρ)/dlog (r) ≈ 2.0) and slope distributions statistically agreeing with observed strong lens galaxies in SLACS and BELLS. Agreement is only slightly worse with the more heterogeneous SL2S lens galaxy sample. Observations of strong-lens selected galaxies thus appear to favor models with relatively weak feedback in massive galaxies.


2021 ◽  
Author(s):  
Eleni Tetoni ◽  
Florian Ewald ◽  
Gregor Möller ◽  
Martin Hagen ◽  
Tobias Zinner ◽  
...  

<p>The challenge of the ice microphysical processes representation in numerical weather models is a well-known phenomenon as it can lead to high uncertainty due to the variety of ice microphysics. As ice microphysical properties can strongly affect the initiation of precipitation as well as the type and amount of it, we need to better understand the complexity of ice processes. To accomplish this, better microphysics information through ice retrievals from measurements is needed. The multi-wavelength radar method is nowadays becoming more and more popular in such microphysics retrievals. Taking advantage of different scattering regimes (Rayleigh or Mie), information about the size of atmospheric hydrometeors can be inferred using different radar bands. For this study, dual-wavelength reflectivity ratio measurements were combined with polarimetric measurements to estimate the size of ice hydrometeors. The measurements were obtained by using the synergy of the C-band POLDIRAD weather radar from the German Aerospace Center, located in Oberpfaffenhofen, and the Ka-band MIRA-35 cloud radar from the Ludwig Maximilian University of Munich. Along with the dual-wavelength dataset, the Differential Reflectivity (Z<sub>DR</sub>) from POLDIRAD was used as a polarimetric contribution for the shape estimation of the detected ice particles. The radar observations were compared with T-matrix scattering simulations for the development of a retrieval scheme of ice microphysics. In the course of these studies, different assumptions were considered in the simulations. To capture the size variability, a Gamma particle size distribution (PSD) with different values of median volume diameter (MVD) was used. The soft spheroid approximation was used to approximate the ice particle shapes and to simplify the calculation and variation of their aspect ratios and effective densities. The selection of the most representative mass-size relation was the most crucial for the scattering simulations. In this study, we explored the modified Brown and Francis as well as the aggregates mass-size relation. After comparing the simulations to radar observations, we selected the better fitting one, i.e. aggregates, excluding the Brown and Francis as the simulated particles appeared to be too fluffy. Using the aggregates formulas, Look-Up tables (LUTs) for MVD, aspect ratio, and IWC were developed and used in the ice microphysics retrieval scheme. Here, we present preliminary microphysics retrievals of the median size, shape, and IWC of the detected hydrometeors combining the simulations in LUTs with the radar observations from different precipitation events over the Munich area.</p>


2021 ◽  
Vol 18 (6) ◽  
pp. 8905-8932
Author(s):  
Sarafa A. Iyaniwura ◽  
◽  
Musa Rabiu ◽  
Jummy F. David ◽  
Jude D. Kong ◽  
...  

<abstract><p>Adherence to public health policies such as the non-pharmaceutical interventions implemented against COVID-19 plays a major role in reducing infections and controlling the spread of the diseases. In addition, understanding the transmission dynamics of the disease is also important in order to make and implement efficient public health policies. In this paper, we developed an SEIR-type compartmental model to assess the impact of adherence to COVID-19 non-pharmaceutical interventions and indirect transmission on the dynamics of the disease. Our model considers both direct and indirect transmission routes and stratifies the population into two groups: those that adhere to COVID-19 non-pharmaceutical interventions (NPIs) and those that do not adhere to the NPIs. We compute the control reproduction number and the final epidemic size relation for our model and study the effect of different parameters of the model on these quantities. Our results show that there is a significant benefit in adhering to the COVID-19 NPIs.</p></abstract>


Author(s):  
Peter Lustig ◽  
Veronica Strazzullo ◽  
Chiara D’Eugenio ◽  
Emanuele Daddi ◽  
Maurilio Pannella ◽  
...  

Abstract We study structural properties of spectroscopically confirmed massive quiescent galaxies at z ≈ 3 with one of the first sizeable samples of such sources, made of ten 10.8 &lt; log (M⋆/M⊙) &lt; 11.3 galaxies at 2.4 &lt; z &lt; 3.2 in the COSMOS field whose redshifts and quiescence are confirmed by HST grism spectroscopy. Although affected by a weak bias toward younger stellar populations, this sample is deemed to be largely representative of the majority of the most massive and thus intrinsically rarest quiescent sources at this cosmic time. We rely on targeted HST/WFC3 observations and fit Sérsic profiles to the galaxy surface brightness distributions at ≈4000Årestframe. We find typically high Sérsic indices and axis ratios (medians ≈4.5 and 0.73, respectively) suggesting that, at odds with some previous results, the first massive quiescent galaxies may largely be already bulge-dominated systems. We measure compact galaxy sizes with an average of ≈1.4kpc at log (M⋆/M⊙) ≈ 11.2, in good agreement with the extrapolation at the highest masses of previous determinations of the stellar mass - size relation of quiescent galaxies, and of its redshift evolution, from photometrically selected samples at lower and similar redshifts. This work confirms the existence of a population of compact, bulge dominated, massive, quiescent sources at z ≈ 3, providing one of the first statistical estimates of their structural properties, and further constraining the early formation and evolution of the first quiescent galaxies.


2020 ◽  
Author(s):  
Faraimunashe Chirove ◽  
Chinwendu Emilian Madubueze ◽  
Zviiteyi Chazuka ◽  
Sunday Casmir Madubueze

We consider a model with mass testing and isolation mimicking the current policies implemented in Nigeria and use the Nigerian daily cumulative cases to calibrate the model to obtain the optimal mass testing and isolation levels. Mathematical analysis was done and important thresholds such the peak size relation and final size relation were obtained. Global stability analysis of the disease-free equilibrium indicated that COVID-19 can be eradicated provided that $\mathcal{R}_0<1$ and unstable otherwise. Results from simulations revealed that an increase in mass testing and reduction of transmission from isolated individuals are associated with benefits of increasing detected cases, lowering peaks of symptomatic cases, increase in self-isolating cases, decrease in cumulative deaths and decrease in admissions into monitored isolation facilities in the case of Nigeria


Sign in / Sign up

Export Citation Format

Share Document