large neuron
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 0)

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Jian Yang ◽  
Yishan He ◽  
Xuefeng Liu

Abstract Since manual tracing is time consuming and the performance of automatic tracing is unstable, it is still a challenging task to generate accurate neuron reconstruction efficiently and effectively. One strategy is generating a reconstruction automatically and then amending its inaccurate parts manually. Aiming at finding inaccurate substructures efficiently, we propose a pipeline to retrieve similar substructures on one or more neuron reconstructions, which are very similar to a marked problematic substructure. The pipeline consists of four steps: getting a marked substructure, constructing a query substructure, generating candidate substructures and retrieving most similar substructures. The retrieval procedure was tested on 163 gold standard reconstructions provided by the BigNeuron project and a reconstruction of a mouse’s large neuron. Experimental results showed that the implementation of the proposed methods is very efficient and all retrieved substructures are very similar to the marked one in numbers of nodes and branches, and degree of curvature.


2020 ◽  
Author(s):  
Jian Yang ◽  
Yishan He ◽  
Xuefeng Liu

Abstract An accurate neuron reconstruction is very important to understand neuron morphology and function, but it is still a challenging task due to the time consuming of manual tracing and the unsatisfactory accuracy of automatic tracing. One way to address the challenge is generating a reconstruction automatically and then checking and amending the result manually. Aiming at implementing this process efficiently, we propose a pipeline to retrieve substructures on one or more neuron reconstructions, which are very similar to a marked problematic substructure and need to be checked one by one. The pipeline consists of four steps: getting a marked substructure, constructing a query substructure, generating candidate substructures and retrieving most similar substructures. The retrieval procedure was tested on 163 gold standard reconstructions provided by the BigNeuron project and a reconstruction of a mouse’s large neuron. Experimental results showed that the implementation of the proposed methods is very efficient and all retrieved substructures are very similar to the marked one in numbers of nodes and branches, and degree of curvature.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
W H Watson ◽  
A Nash ◽  
C Lee ◽  
M D Patz ◽  
J M Newcomb

Synopsis The neuropeptide small cardioactive peptide (SCP) plays an integrative role in exciting various motor programs involved in feeding and locomotion in a number of gastropod species. In this study, immunohistochemistry, using monoclonal antibodies against SCPB, was used to localize SCPB-like-immunoreactive neurons in the central nervous system, and map their connections to various tissues, in the nudibranch, Melibe leonina. Approximately 28–36 SCPB-like-immunoreactive neurons were identified in the M. leonina brain, as well as one large neuron in each of the buccal ganglia. The neuropil of the pedal ganglia contained the most SCPB-like-immunoreactive varicosities, although only a small portion of these were due to SCPB-like-immunoreactive neurons in the same ganglion. This suggests that much of the SCPB-like immunoreactivity in the neuropil of the pedal ganglia was from neurons in other ganglia that projected through the pedal–pedal connectives or the connectives from the cerebral and pleural ganglia. We also observed extensive SCPB innervation along the length of the esophagus. Therefore, we investigated the impact of SCPB on locomotion in intact animals, as well as peristaltic contractions of the isolated esophagus. Injection of intact animals with SCPB at night led to a significant increase in crawling and swimming, compared to control animals injected with saline. Furthermore, perfusion of isolated brains with SCPB initiated expression of the swim motor program. Application of SCPB to the isolated quiescent esophagus initiated rhythmic peristaltic contractions, and this occurred in preparations both with and without the buccal ganglia being attached. All these data, taken together, suggest that SCPB could be released at night to arouse animals and enhance the expression of both feeding and swimming motor programs in M. leonina.


2017 ◽  
Vol 49 (8) ◽  
pp. 1239-1250 ◽  
Author(s):  
Yan Jiang ◽  
Yong-Hwee Eddie Loh ◽  
Prashanth Rajarajan ◽  
Teruyoshi Hirayama ◽  
Will Liao ◽  
...  

2016 ◽  
Vol 28 (11) ◽  
pp. 2505-2532 ◽  
Author(s):  
Sou Nobukawa ◽  
Haruhiko Nishimura

It is well known that cerebellar motor control is fine-tuned by the learning process adjusted according to rich error signals from inferior olive (IO) neurons. Schweighofer and colleagues proposed that these signals can be produced by chaotic irregular firing in the IO neuron assembly; such chaotic resonance (CR) was replicated in their computer demonstration of a Hodgkin-Huxley (HH)-type compartment model. In this study, we examined the response of CR to a periodic signal in the IO neuron assembly comprising the Llinás approach IO neuron model. This system involves empirically observed dynamics of the IO membrane potential and is simpler than the HH-type compartment model. We then clarified its dependence on electrical coupling strength, input signal strength, and frequency. Furthermore, we compared the physiological validity for IO neurons such as low firing rate and sustaining subthreshold oscillation between CR and conventional stochastic resonance (SR) and examined the consistency with asynchronous firings indicated by the previous model-based studies in the cerebellar learning process. In addition, the signal response of CR and SR was investigated in a large neuron assembly. As the result, we confirmed that CR was consistent with the above IO neuron’s characteristics, but it was not as easy for SR.


2015 ◽  
Vol 112 (4) ◽  
pp. 1220-1225 ◽  
Author(s):  
Michael Strüber ◽  
Peter Jonas ◽  
Marlene Bartos

GABAergic perisoma-inhibiting fast-spiking interneurons (PIIs) effectively control the activity of large neuron populations by their wide axonal arborizations. It is generally assumed that the output of one PII to its target cells is strong and rapid. Here, we show that, unexpectedly, both strength and time course of PII-mediated perisomatic inhibition change with distance between synaptically connected partners in the rodent hippocampus. Synaptic signals become weaker due to lower contact numbers and decay more slowly with distance, very likely resulting from changes in GABAA receptor subunit composition. When distance-dependent synaptic inhibition is introduced to a rhythmically active neuronal network model, randomly driven principal cell assemblies are strongly synchronized by the PIIs, leading to higher precision in principal cell spike times than in a network with uniform synaptic inhibition.


Sign in / Sign up

Export Citation Format

Share Document