neuron morphology
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 37)

H-INDEX

24
(FIVE YEARS 2)

Author(s):  
Rohit Joshi ◽  
Rashmi Sipani ◽  
Asif Bakshi

Hox genes have been known for specifying the anterior-posterior axis (AP) in bilaterian body plans. Studies in vertebrates have shown their importance in developing region-specific neural circuitry and diversifying motor neuron pools. In Drosophila, they are instrumental for segment-specific neurogenesis and myogenesis early in development. Their robust expression in differentiated neurons implied their role in assembling region-specific neuromuscular networks. In the last decade, studies in Drosophila have unequivocally established that Hox genes go beyond their conventional functions of generating cellular diversity along the AP axis of the developing central nervous system. These roles range from establishing and maintaining the neuromuscular networks to controlling their function by regulating the motor neuron morphology and neurophysiology, thereby directly impacting the behavior. Here we summarize the limited knowledge on the role of Drosophila Hox genes in the assembly of region-specific neuromuscular networks and their effect on associated behavior.


Peptides ◽  
2021 ◽  
Vol 146 ◽  
pp. 170659
Author(s):  
Fengmei Wei ◽  
Lang Zhang ◽  
Bo Ma ◽  
Wenhao Li ◽  
Xiao Deng ◽  
...  

2021 ◽  
Author(s):  
Katherine A Giles ◽  
Andrew J Phipps ◽  
Jake M Cashion ◽  
Shannon N Huskins ◽  
Timothy R Mercer ◽  
...  

Neurons live for the lifespan of the individual and underlie our ability for lifelong learning and memory. However, aging alters neuron morphology and function resulting in age-related cognitive decline. It is well established that epigenetic alterations are essential for learning and memory, yet few neuron-specific genome-wide epigenetic maps exist into old age. Comprehensive mapping of H3K4me3 and H3K27ac in mouse neurons across lifespan revealed plastic H3K4me3 marking that differentiates neuronal age linked to known characteristics of cellular and neuronal aging. We determined that neurons in old age recapitulate the H3K27ac enrichment at promoters, enhancers and super enhancers from young adult neurons, likely representing a re-activation of pathways to maintain neuronal output. Finally, this study identified new characteristics of neuronal aging, including altered rDNA regulation and epigenetic regulatory mechanisms. Collectively, these findings indicate a key role for epigenetic regulation in neurons, that is inextricably linked with aging.


2021 ◽  
Author(s):  
Polina Kosillo ◽  
Kamran M. Ahmed ◽  
Bradley M. Roberts ◽  
Stephanie J. Cragg ◽  
Helen S. Bateup

The mTOR pathway is an essential regulator of cell growth and metabolism. Midbrain dopamine neurons are particularly sensitive to mTOR signaling status as activation or inhibition of mTOR alters their morphology and physiology. mTOR exists in two distinct multiprotein complexes termed mTORC1 and mTORC2. How each of these complexes affect dopamine neuron properties and whether they act together or independently is unknown. Here we investigated this in mice with dopamine neuron-specific deletion of Rptor or Rictor, which encode obligatory components of mTORC1 or mTORC2, respectively. We find that inhibition of mTORC1 strongly and broadly impacts dopamine neuron structure and function causing somatodendritic and axonal hypotrophy, increased intrinsic excitability, decreased dopamine production, and impaired dopamine release. In contrast, inhibition of mTORC2 has more subtle effects, with selective alterations to the output of ventral tegmental area dopamine neurons. As mTOR is involved in several brain disorders caused by dopaminergic dysregulation including Parkinson's disease and addiction, our results have implications for understanding the pathophysiology and potential therapeutic strategies for these diseases.


2021 ◽  
Vol 21 ◽  
Author(s):  
Airam Barbosa de Moura ◽  
Morgana Sonza Abitante ◽  
Ritele Hernandez Silva ◽  
João Quevedo ◽  
Gislaine Zilli Réus

: Microglia are immune cells found in the central nervous system (CNS) involved in infection combat and cellular debris clean. These glial cells are involved in synaptogenesis during brain development by their interactions with neurons and other glial cells. These relations are associated with the secretion of signaling molecules, such as chemokines and neurotrophic factors. Microglia cells influence synapsis and neuron morphology during different phases of development. Also, other systems, for example, gut microbiota indirectly affect microglial functions and morphology. Several factors that can occur in different development periods, including intrauterine through adult life, could impact microglia. Impairment in these cells could be associated with the development of some psychiatric conditions, such as schizophrenia, autistic spectrum disorder (ASD), and depression. This review is focusing on describing microglia functions in the maintenance of CNS and how they are associated with other systems, as the gut-microbiota brain axis and environmental stressors, such as stress, maternal deprivation, sleep deprivation, immune activation, and ethanol exposure, that can influence the function of the microglia during neurodevelopment.


2021 ◽  
Author(s):  
Lisa Mais ◽  
Peter Hirsch ◽  
Claire Managan ◽  
Kaiyu Wang ◽  
Konrad Rokicki ◽  
...  

Studies of individual neurons in the Drosophila nervous system are facilitated by transgenic lines that sparsely and repeatably label respective neurons of interest. Sparsity can be enhanced by means of intersectional approaches like the split-GAL4 system, which labels the positive intersection of the expression patterns of two (denser) GAL4 lines. To this end, two GAL4 lines have to be identified as labelling a neuron of interest. Current approaches to tackling this task include visual inspection, as well as automated search in 2d projection images, of single cell multi-color flip-out (MCFO) acquisitions of GAL4 expression patterns. There is to date no automated method available that performs full 3d search in MCFO imagery of GAL4 lines, nor one that leverages automated reconstructions of the labelled neuron morphologies. To close this gap, we propose PatchPerPixMatch, a fully automated approach for finding a given neuron morphology in MCFO acquisitions of Gen1 GAL4 lines. PatchPerPixMatch performs automated instance segmentation of MCFO acquisitions, and subsequently searches for a target neuron morphology by minimizing an objective that aims at covering the target with a set of well-fitting segmentation fragments. PatchPerPixMatch is computationally efficient albeit being full 3d, while also highly robust to inaccuracies in the automated neuron instance segmentation. We are releasing PatchPerPixMatch search results for ~30,000 neuron morphologies from the Drosophila hemibrain in ~20,000 MCFO acquisitions of ~3,500 Gen1 GAL4 lines.


2021 ◽  
Vol 2 (2) ◽  
pp. 100567
Author(s):  
Sumit Nanda ◽  
Shatabdi Bhattacharjee ◽  
Daniel N. Cox ◽  
Giorgio A. Ascoli

2021 ◽  
Vol 11 (5) ◽  
pp. 1348-1356
Author(s):  
Jian Yang ◽  
Yong Zhang ◽  
Yuanlin Yu ◽  
Ning Zhong

Digital reconstruction of neurons is a critical step in studying neuronal morphology and exploring the working mechanism of the brain. In recent years, the focus of neuronal morphology reconstruction has gradually shifted from single neurons to multiple neurons in a whole brain. Microscopic images of a whole brain often have low signal-to-noise-ratio, discontinuous neuron fragments or weak neuron signals. It is very difficult to segment neuronal signals from the background of these images, which is the first step of most automatic reconstruction algorithms. In this study, we propose a Nested U-Net based Ultra-Tracer model (NUNU-Tracer) for better multiple neurons image segmentation and morphology reconstruction. The NUNU-Tracer utilizes nested U-Net (UNet++) deep network to segment 3D neuron images, reconstructs neuron morphologies under the framework of the Ultra-Tracer and prunes branches of noncurrent tracing neurons. The 3D UNet++ takes a 3D microscopic image as its input, and uses scale-space distance transform and linear fusion strategy to generate the segmentation maps for voxels in the image. It is capable of removing noise, repairing broken neurite patterns and enhancing neuronal signals. We evaluate the performance of the 3D UNet++ for image segmentation and NUNU-Tracer for neuron morphology reconstruction on image blocks and neurons, respectively. Experimental results show that they significantly improve the accuracy and length of neuron reconstructions.


Sign in / Sign up

Export Citation Format

Share Document