neuron networks
Recently Published Documents


TOTAL DOCUMENTS

256
(FIVE YEARS 64)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Zulqurnain Sabir ◽  
Muhammad Asif Zahoor Raja ◽  
Yolanda Guerrero Sánchez

The aim of the current work is to perform the numerical investigation of the infectious disease based on the nonlinear fractional order prey-predator model using the Levenberg–Marquardt backpropagation (LMB) based on the artificial neuron networks (ANNs), i.e., LMBNNs. The fractional prey-predator model is classified into three categories, the densities of the susceptible, infected prey, and predator populations. The statistics proportions for solving three different variations of the infectious disease based on the fractional prey-predator model are designated for training 80% and 10% for both validation and testing. The numerical actions are performed using the LMBNNs to solve the infectious disease based on the fractional prey-predator model, and comparison is performed using the database Adams–Bashforth–Moulton approach. The infectious disease based on the fractional prey-predator model is solved using the LMBNNs to reduce the mean square error (M.S.E). In order to validate the exactness, capability, consistency, and competence of the proposed LMBNNs, the numerical procedures using the correlation, M.S.E, regression, and error histograms are drawn.


Author(s):  
Gonzalo Marcelo Ramírez-Ávila ◽  
Stéphanie Depickère ◽  
Imre M. Jánosi ◽  
Jason A. C. Gallas

AbstractLarge-scale brain simulations require the investigation of large networks of realistic neuron models, usually represented by sets of differential equations. Here we report a detailed fine-scale study of the dynamical response over extended parameter ranges of a computationally inexpensive model, the two-dimensional Rulkov map, which reproduces well the spiking and spiking-bursting activity of real biological neurons. In addition, we provide evidence of the existence of nested arithmetic progressions among periodic pulsing and bursting phases of Rulkov’s neuron. We find that specific remarkably complex nested sequences of periodic neural oscillations can be expressed as simple linear combinations of pairs of certain basal periodicities. Moreover, such nested progressions are robust and can be observed abundantly in diverse control parameter planes which are described in detail. We believe such findings to add significantly to the knowledge of Rulkov neuron dynamics and to be potentially helpful in large-scale simulations of the brain and other complex neuron networks.


2021 ◽  
Vol 15 ◽  
Author(s):  
Vegard Fiskum ◽  
Axel Sandvig ◽  
Ioanna Sandvig

The effects of hypoxia, or reduced oxygen supply, to brain tissue can be disastrous, leading to extensive loss of function. Deoxygenated tissue becomes unable to maintain healthy metabolism, which leads to increased production of reactive oxygen species (ROS) and loss of calcium homoeostasis, with damaging downstream effects. Neurons are a highly energy demanding cell type, and as such they are highly sensitive to reductions in oxygenation and some types of neurons such as motor neurons are even more susceptible to hypoxic damage. In addition to the immediate deleterious effects hypoxia can have on neurons, there can be delayed effects which lead to increased risk of developing neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), even if no immediate consequences are apparent. Furthermore, impairment of the function of various hypoxia-responsive factors has been shown to increase the risk of developing several neurodegenerative disorders. Longitudinal assessment of electrophysiological network activity is underutilised in assessing the effects of hypoxia on neurons and how their activity and communication change over time following a hypoxic challenge. This study utilised multielectrode arrays and motor neuron networks to study the response to hypoxia and the subsequent development of the neuronal activity over time, as well as the effect of silencing network activity during the hypoxic challenge. We found that motor neuron networks exposed to hypoxic challenge exhibited a delayed fluctuation in multiple network activity parameters compared to normoxic networks. Silencing of activity during the hypoxic challenge leads to maintained bursting activity, suggesting that functional outcomes are better maintained in these networks and that there are activity-dependent mechanisms involved in the network damage following hypoxia.


Author(s):  
K. Akkouchi ◽  
L. Rahmani ◽  
R. Lebied

Purpose. This article proposes a new strategy for Direct Power Control (DPC) based on the use of Artificial Neural Networks (ANN-DPC). The proposed ANN-DPC scheme is based on the replacement of PI and hysteresis regulators by neural regulators. Simulation results for a 1 kW system are provided to demonstrate the efficiency and robustness of the proposed control strategy during variations in active and reactive power and in DC bus voltage. Methodology. Our strategy is based on direct control of instant active and reactive powers. The voltage regulator and hysteresis are replaced by more efficient and robust artificial neuron networks. The proposed control technique strategy is validated using MATLAB / Simulink software to analysis the working performances. Results. The results obtained clearly show that neuronal regulators have good dynamic performances compared to conventional regulators (minimum response time, without overshoots). Originality. Regulation of continuous bus voltage and sinusoidal currents on the network side by using artificial neuron networks. Practical value. The work concerns the comparative study and the application of DPC based on ANN techniques to achieve a good performance control system of the permanent magnet synchronous generator. This article presents a comparative study between the conventional DPC control and the ANN-DPC control. The first strategy based on the use of a PI controller for the control of the continuous bus voltage and hysteresis regulators for the instantaneous powers control. In the second technique, the PI and hysteresis regulators are replaced by more efficient neuronal controllers more robust for the system parameters variation. The study is validated by the simulation results based on MATLAB / Simulink software.


Author(s):  
Muhammad Umar ◽  
Zulqurnain Sabir ◽  
Muhammad Asif Zahoor Raja ◽  
Shumaila Javeed ◽  
Hijaz Ahmad ◽  
...  

The current investigations of the COVID-19 spreading model are presented through the artificial neuron networks (ANNs) with training of the Levenberg-Marquardt backpropagation (LMB), i.e., ANNs-LMB. The ANNs-LMB scheme is used in different variations of the sample data for training, validation, and testing with 80%, 10%, and 10%, respectively. The approximate numerical solutions of the COVID-19 spreading model have been calculated using the ANNs-LMB and compared viably using the reference dataset based on the Runge-Kutta scheme. The obtained performance of the solution dynamics of the COVID-19 spreading model are presented based on the ANNs-LMB to minimize the values of fitness on mean square error (M.S.E), along with error histograms, regression, and correlation analysis.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Leonardo Dalla Porta ◽  
Daniel M. Castro ◽  
Mauro Copelli ◽  
Pedro V. Carelli ◽  
Fernanda S. Matias

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257659
Author(s):  
Jacob P. Sunnerberg ◽  
Marc Descoteaux ◽  
David L. Kaplan ◽  
Cristian Staii

The formation of neuron networks is a complex phenomenon of fundamental importance for understanding the development of the nervous system, and for creating novel bioinspired materials for tissue engineering and neuronal repair. The basic process underlying the network formation is axonal growth, a process involving the extension of axons from the cell body towards target neurons. Axonal growth is guided by environmental stimuli that include intercellular interactions, biochemical cues, and the mechanical and geometrical features of the growth substrate. The dynamics of the growing axon and its biomechanical interactions with the growing substrate remains poorly understood. In this paper, we develop a model of axonal motility which incorporates mechanical interactions between the axon and the growth substrate. We combine experimental data with theoretical analysis to measure the parameters that describe axonal growth on surfaces with micropatterned periodic geometrical features: diffusion (cell motility) coefficients, speed and angular distributions, and axon bending rigidities. Experiments performed on neurons treated Taxol (inhibitor of microtubule dynamics) and Blebbistatin (disruptor of actin filaments) show that the dynamics of the cytoskeleton plays a critical role in the axon steering mechanism. Our results demonstrate that axons follow geometrical patterns through a contact-guidance mechanism, in which high-curvature geometrical features impart high traction forces to the growth cone. These results have important implications for our fundamental understanding of axonal growth as well as for bioengineering novel substrates that promote neuronal growth and nerve repair.


2021 ◽  
pp. 101-122
Author(s):  
Victor Erokhin
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5062
Author(s):  
Xuejing Lan ◽  
Zhifeng Tan ◽  
Tao Zou ◽  
Wenbiao Xu

This paper focuses on the trajectory tracking guidance problem for the Terminal Area Energy Management (TAEM) phase of the Reusable Launch Vehicle (RLV). Considering the continuous state and action space of this guidance problem, the Continuous Actor–Critic Learning Automata (CACLA) is applied to construct the guidance strategy of RLV. Two three-layer neuron networks are used to model the critic and actor of CACLA, respectively. The weight vectors of the critic are updated by the model-free Temporal Difference (TD) learning algorithm, which is improved by eligibility trace and momentum factor. The weight vectors of the actor are updated based on the sign of TD error, and a Gauss exploration is carried out in the actor. Finally, a Monte Carlo simulation and a comparison simulation are performed to show the effectiveness of the CACLA-based guidance strategy.


2021 ◽  
Author(s):  
Chu-En Lin ◽  
Yueh-Heng Lu ◽  
Yu-Tung Lin ◽  
Ya-Fan Chen ◽  
Ching-Pao Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document