stable xenon
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 0)

H-INDEX

24
(FIVE YEARS 0)

2015 ◽  
Vol 92 (9) ◽  
Author(s):  
Feng Peng ◽  
Yanchao Wang ◽  
Hui Wang ◽  
Yunwei Zhang ◽  
Yanming Ma
Keyword(s):  


2014 ◽  
Vol 137 ◽  
pp. 88-95 ◽  
Author(s):  
W.S. Cassata ◽  
S.G. Prussin ◽  
K.B. Knight ◽  
I.D. Hutcheon ◽  
B.H. Isselhardt ◽  
...  


2012 ◽  
Vol 14 (5) ◽  
pp. 641-648 ◽  
Author(s):  
M. Crocker ◽  
S. Saadoun ◽  
A. Jury ◽  
C. Jones ◽  
S. Zacharoulis ◽  
...  


Radiology ◽  
2012 ◽  
Vol 262 (1) ◽  
pp. 262-268 ◽  
Author(s):  
Norinari Honda ◽  
Hisato Osada ◽  
Wataru Watanabe ◽  
Mitsuo Nakayama ◽  
Keiichiro Nishimura ◽  
...  


2012 ◽  
Vol 40 (5) ◽  
pp. 322-327
Author(s):  
Hajime TOUHO ◽  
Daiji OGAWA ◽  
Hiroshi UEKI ◽  
Naoki ISOTANI


2011 ◽  
Vol 83 (4) ◽  
Author(s):  
L. Coquard ◽  
G. Rainovski ◽  
N. Pietralla ◽  
T. Ahn ◽  
L. Bettermann ◽  
...  


2009 ◽  
Vol 282 (3) ◽  
pp. 677-680 ◽  
Author(s):  
D. A. Haas ◽  
S. R. Biegalski ◽  
K. M. Foltz Biegalski


2008 ◽  
Vol 276 (3) ◽  
pp. 763-769 ◽  
Author(s):  
P. E. Dresel ◽  
K. B. Olsen ◽  
J. C. Hayes ◽  
J. I. McIntyre ◽  
S. R. Waichler ◽  
...  


2008 ◽  
Vol 108 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Roman Hlatky ◽  
Alex B. Valadka ◽  
Shankar P. Gopinath ◽  
Claudia S. Robertson

Object Increasing PaO2 can increase brain tissue PO2 (PbtO2). Nevertheless, the small increase in arterial O2 content induced by hyperoxia does not increase O2 delivery much, especially when cerebral blood flow (CBF) is low, and the effectiveness of hyperoxia as a therapeutic intervention remains controversial. The purpose of this study was to examine the role of regional (r)CBF at the site of the PO2 probe in determining the response of PbtO2 to induced hyperoxia. Methods The authors measured PaO2 and PbtO2 at baseline normoxic conditions and after increasing inspired O2 concentration to 100% on 111 occasions in 83 patients with severe traumatic brain injury in whom a stable xenon–enhanced computed tomography measurement of CBF was available. The O2 reactivity was calculated as the change in PbtO2 × 100/change in PaO2. Results The O2 reactivity was significantly different (p < 0.001) at the 5 levels of rCBF (<10, 11–15, 16–20, 21–40, and > 40 ml/100 g/min). When rCBF was < 20 ml/100 g/min, the increase in PbtO2 induced by hyperoxia was very small compared with the increase that occurred when rCBF was > 20 ml/100 g/min. Conclusions Although the level of CBF is probably only one of the factors that determines the PbtO2 response to hyperoxia, it is apparent from these results that the areas of the brain that would most likely benefit from improved oxygenation are the areas that are the least likely to have increased PbtO2.



2007 ◽  
Vol 4 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Yoshiaki Inoue ◽  
Tadahiko Shiozaki ◽  
Taro Irisawa ◽  
Tomoyoshi Mohri ◽  
Kazuhisa Yoshiya ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document