tuning rate
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Manjusha Boda ◽  
G Naresh Patwari

Carboxylic acids form exceptionally stable dimers and have been used to model proton and double proton transfer processes. The stabilization energies of the carboxylic acid dimers are very weakly dependent on the nature of the substitution. However, the electric field experienced by the OH group of a particular carboxylic acid is dependent more on the nature of the substitution on the dimer partner. In general, the electric field was higher when the partner was substituted with electron-donating group and lower with electron-withdrawing substituent on the partner. The Stark tuning rate (∆μ) of the O–H stretching vibrations calculated at the MP2/aug-cc-pVDZ level was found to be weakly dependent on the nature of substitution on the carboxylic acid. The average Stark tuning rate of O–H stretching vibrations of a particular carboxylic acid when paired with other acids was 5.7 cm–1 (MV cm–1)–1, while the corresponding average Stark tuning rate of the partner acids due to a particular carboxylic acid was 21.9 cm–1 (MV cm–1)–1. The difference in the Stark tuning rate is attributed to the primary and secondary effects of substitution on the carboxylic acid. The average Stark tuning rate for the anharmonic O–D frequency shifts is about 40-50% higher than the corresponding harmonic O–D frequency shifts calculated at B3LYP/aug-cc-pVDZ level, much greater than the typical scaling factors used, indicating the strong anharmonicity of O–H/O–D oscillators in carboxylic acid dimers. Finally, the linear correlation observed between pKa and the electric field was used to estimate the pKa of fluoroformic acid to be around 0.9.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 205
Author(s):  
Shuai Zhang ◽  
Tianrui Zhai ◽  
Libin Cui ◽  
Xiaoyu Shi ◽  
Kun Ge ◽  
...  

In this work, the thermo-optic effect in polymers was used to realize a temperature-tunable whispering-gallery-mode laser. The laser was fabricated using a capillary tube filled with a light-emitting conjugated polymer solution via the capillary effect. In the whispering-gallery-mode laser emission wavelength can be continuously tuned to about 19.5 nm using thermo-optic effect of polymer. The influence of different organic solvents on the tuning rate was studied. For a typical lasing mode with a bandwidth of 0.08 nm, a temperature-resolved tuning rate of ~1.55 nm/°C was obtained. The two-ring coupling effect is responsible for the suppression of the WGM in the micro-cavity laser. The proposed laser exhibited good reversibility and repeatability as well as a sensitive response to temperature, which could be applied to the design of photothermic and sensing devices.


Author(s):  
Xiaoxia Chang ◽  
Haocheng Xiong ◽  
Yifei Xu ◽  
Yaran Zhao ◽  
Qi Lu ◽  
...  

This work reports a general and effective strategy of determining the intrinsic Stark tuning rate by removing the impact of the dynamical coupling of adsorbed CO on the Cu surface with surface enhanced infrared absorption spectroscopy (SEIRAS).


2020 ◽  
Vol 12 (43) ◽  
pp. 48677-48683
Author(s):  
Zijian Wang ◽  
Luyi Yang ◽  
Jiajie Liu ◽  
Yongli Song ◽  
Qinghe Zhao ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4725 ◽  
Author(s):  
Jesper B. Christensen ◽  
Lasse Høgstedt ◽  
Søren M. M. Friis ◽  
Jui-Yu Lai ◽  
Ming-Hsien Chou ◽  
...  

Quartz-enhanced photoacoustic sensing is a promising method for low-concentration trace-gas monitoring due to the resonant signal enhancement provided by a high-Q quartz tuning fork. However, quartz-enhanced photoacoustic spectroscopy (QEPAS) is associated with a relatively slow acoustic decay, which results in a reduced spectral resolution and signal-to-noise ratio as the wavelength tuning rate is increased. In this work, we investigate the influence of wavelength scan rate on the spectral resolution and signal-to-noise ratio of QEPAS sensors. We demonstrate the acquisition of photoacoustic spectra from 3.1 μm to 3.6 μm using a tunable mid-infrared optical parametric oscillator. The spectra are attained using wavelength scan rates differing by more than two orders of magnitude (from 0.3 nm s−1 to 96 nm s−1). With this variation in scan rate, the spectral resolution is found to change from 2.5 cm−1 to 9 cm−1. The investigated gas samples are methane (in nitrogen) and a gas mixture consisting of methane, water, and ethanol. For the gas mixture, the reduced spectral resolution at fast scan rates significantly complicates the quantification of constituent gas concentrations.


Sign in / Sign up

Export Citation Format

Share Document