UNIVERSALLY BAIRE SETS AND GENERIC ABSOLUTENESS

2017 ◽  
Vol 82 (4) ◽  
pp. 1229-1251
Author(s):  
TREVOR M. WILSON

AbstractWe prove several equivalences and relative consistency results regarding generic absoluteness beyond Woodin’s ${\left( {{\bf{\Sigma }}_1^2} \right)^{{\rm{u}}{{\rm{B}}_\lambda }}}$ generic absoluteness result for a limit of Woodin cardinals λ. In particular, we prove that two-step $\exists ^ℝ \left( {{\rm{\Pi }}_1^2 } \right)^{{\rm{uB}}_\lambda } $ generic absoluteness below a measurable limit of Woodin cardinals has high consistency strength and is equivalent, modulo small forcing, to the existence of trees for ${\left( {{\bf{\Pi }}_1^2} \right)^{{\rm{u}}{{\rm{B}}_\lambda }}}$ formulas. The construction of these trees uses a general method for building an absolute complement for a given tree T assuming many “failures of covering” for the models $L\left( {T,{V_\alpha }} \right)$ for α below a measurable cardinal.

2019 ◽  
Vol 85 (1) ◽  
pp. 338-366 ◽  
Author(s):  
JUAN P. AGUILERA ◽  
SANDRA MÜLLER

AbstractWe determine the consistency strength of determinacy for projective games of length ω2. Our main theorem is that $\Pi _{n + 1}^1 $-determinacy for games of length ω2 implies the existence of a model of set theory with ω + n Woodin cardinals. In a first step, we show that this hypothesis implies that there is a countable set of reals A such that Mn (A), the canonical inner model for n Woodin cardinals constructed over A, satisfies $$A = R$$ and the Axiom of Determinacy. Then we argue how to obtain a model with ω + n Woodin cardinal from this.We also show how the proof can be adapted to investigate the consistency strength of determinacy for games of length ω2 with payoff in $^R R\Pi _1^1 $ or with σ-projective payoff.


2017 ◽  
Vol 82 (3) ◽  
pp. 1106-1131 ◽  
Author(s):  
PHILIPP LÜCKE ◽  
RALF SCHINDLER ◽  
PHILIPP SCHLICHT

AbstractWe study Σ1(ω1)-definable sets (i.e., sets that are equal to the collection of all sets satisfying a certain Σ1-formula with parameter ω1 ) in the presence of large cardinals. Our results show that the existence of a Woodin cardinal and a measurable cardinal above it imply that no well-ordering of the reals is Σ1(ω1)-definable, the set of all stationary subsets of ω1 is not Σ1(ω1)-definable and the complement of every Σ1(ω1)-definable Bernstein subset of ${}_{}^{{\omega _1}}\omega _1^{}$ is not Σ1(ω1)-definable. In contrast, we show that the existence of a Woodin cardinal is compatible with the existence of a Σ1(ω1)-definable well-ordering of H(ω2) and the existence of a Δ1(ω1)-definable Bernstein subset of ${}_{}^{{\omega _1}}\omega _1^{}$. We also show that, if there are infinitely many Woodin cardinals and a measurable cardinal above them, then there is no Σ1(ω1)-definable uniformization of the club filter on ω1. Moreover, we prove a perfect set theorem for Σ1(ω1)-definable subsets of ${}_{}^{{\omega _1}}\omega _1^{}$, assuming that there is a measurable cardinal and the nonstationary ideal on ω1 is saturated. The proofs of these results use iterated generic ultrapowers and Woodin’s ℙmax-forcing. Finally, we also prove variants of some of these results for Σ1(κ)-definable subsets of κκ, in the case where κ itself has certain large cardinal properties.


2018 ◽  
Vol 83 (2) ◽  
pp. 572-597 ◽  
Author(s):  
ITAY NEEMAN ◽  
ZACH NORWOOD

AbstractWe prove that, in the choiceless Solovay model, every set of reals isH-Ramsey for every happy familyHthat also belongs to the Solovay model. This gives a new proof of Törnquist’s recent theorem that there are no infinite mad families in the Solovay model. We also investigate happy families and mad families under determinacy, applying a generic absoluteness result to prove that there are no infinite mad families under$A{D^ + }$.


1980 ◽  
Vol 45 (1) ◽  
pp. 103-120 ◽  
Author(s):  
J. V. Tucker

A natural way of studying the computability of an algebraic structure or process is to apply some of the theory of the recursive functions to the algebra under consideration through the manufacture of appropriate coordinate systems from the natural numbers. An algebraic structure A = (A; σ1,…, σk) is computable if it possesses a recursive coordinate system in the following precise sense: associated to A there is a pair (α, Ω) consisting of a recursive set of natural numbers Ω and a surjection α: Ω → A so that (i) the relation defined on Ω by n ≡α m iff α(n) = α(m) in A is recursive, and (ii) each of the operations of A may be effectively followed in Ω, that is, for each (say) r-ary operation σ on A there is an r argument recursive function on Ω which commutes the diagramwherein αr is r-fold α × … × α.This concept of a computable algebraic system is the independent technical idea of M.O.Rabin [18] and A.I.Mal'cev [14]. From these first papers one may learn of the strength and elegance of the general method of coordinatising; note-worthy for us is the fact that computability is a finiteness condition of algebra—an isomorphism invariant possessed of all finite algebraic systems—and that it serves to set upon an algebraic foundation the combinatorial idea that a system can be combinatorially presented and have effectively decidable term or word problem.


2018 ◽  
Vol 83 (04) ◽  
pp. 1512-1538 ◽  
Author(s):  
CHRIS LAMBIE-HANSON ◽  
PHILIPP LÜCKE

AbstractWith the help of various square principles, we obtain results concerning the consistency strength of several statements about trees containing ascent paths, special trees, and strong chain conditions. Building on a result that shows that Todorčević’s principle $\square \left( {\kappa ,\lambda } \right)$ implies an indexed version of $\square \left( {\kappa ,\lambda } \right)$, we show that for all infinite, regular cardinals $\lambda < \kappa$, the principle $\square \left( \kappa \right)$ implies the existence of a κ-Aronszajn tree containing a λ-ascent path. We then provide a complete picture of the consistency strengths of statements relating the interactions of trees with ascent paths and special trees. As a part of this analysis, we construct a model of set theory in which ${\aleph _2}$-Aronszajn trees exist and all such trees contain ${\aleph _0}$-ascent paths. Finally, we use our techniques to show that the assumption that the κ-Knaster property is countably productive and the assumption that every κ-Knaster partial order is κ-stationarily layered both imply the failure of $\square \left( \kappa \right)$.


1963 ◽  
Vol 59 (2) ◽  
pp. 287-305
Author(s):  
S. N. Afriat

A normal preference system for a combination of goods is represented by an increasing function φ with convex levels. From Gossen's law, that preference and price directions coincide in equilibrium (a special consequence of his Second Law), it follows that, on the data that xr is the vector of quantities purchased at prices given by a vector pr (r = 1,…, k), the gradient gr = g(xr) of the function φ at the point xr is given byfor some positive multiplier μr;. There may be considered the class of preference functions thus satisfying Gossen's law in respect to the data, and thus with gradients taking prescribed directions at k prescribed points. In particular, there may be considered the subclass of these which are quadratic in some convex region containing the points xr. By choosing any multipliers μr, there is obtained a set of gradients gr associated with the points xr. It is asked if there exists a quadratic function which is increasing and has convex levels in a convex neighbourhood of the points xr, and whose gradient at xr is gr; also it is required to characterize the class of such functions, which, if any exist, form an infinite variety. This is the background of the questions which are going to be investigated, and which are of importance in a general method of empirical preference analysis in economics.


1976 ◽  
Vol 41 (2) ◽  
pp. 465-466
Author(s):  
John Lake

The set theory AFC was introduced by Perlis in [2] and he noted that it both includes and is stronger than Ackermann's set theory. We shall give a relative consistency result for AFC.AFC is obtained from Ackermann's set theory (see [2]) by replacing Ackermann's set existence schema with the schema(where ϕ, ψ, are ∈-formulae, x is not in ψ, w is not in ϕ, y is y1, …, yn, z is z1, …, zm and all free variables are shown) and adding the axiom of choice for sets. Following [1], we say that λ is invisible in Rκ if λ < κ and we haveholding for every ∈-formula θ which has exactly two free variables and does not involve u or υ. The existence of a Ramsey cardinal implies the existence of cardinals λ and κ with λ invisible in Rκ, and Theorem 1.13 of [1] gives some further indications about the relative strength of the notion of invisibility.Theorem. If there are cardinals λ and κ with λ invisible in Rκ, then AFC is consistent.Proof. Suppose that λ is invisible in Rκ and we will show that 〈Rκ, Rλ, ∈〉 ⊧ AFC (Rλ being the interpretation of V, of course).


1948 ◽  
Vol 13 (4) ◽  
pp. 204-207 ◽  
Author(s):  
Andkzej Mostowski

It has been proved by S. C. Kleene and David Nelson that the formulais intuitionistically non-deducible, i.e., non-deducible within the intuitionistic functional calculus.The aim of this note is to outline a general method which permits us to establish the intuitionistic non-deducibility of many formulas and in particular of the formula (1).


2006 ◽  
Vol 71 (4) ◽  
pp. 1145-1154
Author(s):  
Ralf Schindler

AbstractLet 0 < n < ω. If there are n Woodin cardinals and a measurable cardinal above, but doesn't exist, then the core model K exists in a sense made precise. An Iterability Inheritance Hypothesis is isolated which is shown to imply an optimal correctness result for K.


1977 ◽  
Vol 42 (2) ◽  
pp. 297-305 ◽  
Author(s):  
Jan Mycielski

We consider first-order logic only. A theory S will be called locally interpretable in a theory T if every theorem of S is interpretable in T. If S is locally interpretable in T and T is consistent then S is consistent. Most known relative consistency proofs can be viewed as local interpretations. The classic examples are the cartesian interpretation of the elementary theorems of Euclidean n-dimensional geometry into the first-order theory of real closed fields, the interpretation of the arithmetic of integers (rational numbers) into the arithmetic of positive integers, the interpretation of ZF + (V = L) into ZF, the interpretation of analysis into ZFC, relative consistency proofs by forcing, etc. Those interpretations are global. Under fairly general conditions local interpretability implies global interpretability; see Remarks (7), (8), and (9) below.We define the type (interpretability type) of a theory S to be the class of all theories T such that S is locally interpretable in T and vice versa. There happen to be such types and they are partially ordered by the relation of local interpretability. This partial ordering is of lattice type and has the following form:The lattice is distributive and complete and satisfies the infinite distributivity law of Brouwerian lattices:We do not know if the dual lawis true. We will show that the lattice is algebraic and that its compact elements form a sublattice and are precisely the types of finitely axiomatizable theories, and several other facts.


Sign in / Sign up

Export Citation Format

Share Document