woodin cardinals
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
pp. 1-30
Author(s):  
SANDRA MÜLLER ◽  
GRIGOR SARGSYAN

2020 ◽  
pp. 2150012
Author(s):  
Juliette Kennedy ◽  
Menachem Magidor ◽  
Jouko Väänänen

If we replace first-order logic by second-order logic in the original definition of Gödel’s inner model [Formula: see text], we obtain the inner model of hereditarily ordinal definable (HOD) sets [33]. In this paper, we consider inner models that arise if we replace first-order logic by a logic that has some, but not all, of the strength of second-order logic. Typical examples are the extensions of first-order logic by generalized quantifiers, such as the Magidor–Malitz quantifier [24], the cofinality quantifier [35], or stationary logic [6]. Our first set of results show that both [Formula: see text] and HOD manifest some amount of formalism freeness in the sense that they are not very sensitive to the choice of the underlying logic. Our second set of results shows that the cofinality quantifier gives rise to a new robust inner model between [Formula: see text] and HOD. We show, among other things, that assuming a proper class of Woodin cardinals the regular cardinals [Formula: see text] of [Formula: see text] are weakly compact in the inner model arising from the cofinality quantifier and the theory of that model is (set) forcing absolute and independent of the cofinality in question. We do not know whether this model satisfies the Continuum Hypothesis, assuming large cardinals, but we can show, assuming three Woodin cardinals and a measurable above them, that if the construction is relativized to a real, then on a cone of reals, the Continuum Hypothesis is true in the relativized model.


2020 ◽  
Vol 20 (Supp01) ◽  
pp. 1950013 ◽  
Author(s):  
Sandra Müller ◽  
Ralf Schindler ◽  
W. Hugh Woodin

We prove the following result which is due to the third author. Let [Formula: see text]. If [Formula: see text] determinacy and [Formula: see text] determinacy both hold true and there is no [Formula: see text]-definable [Formula: see text]-sequence of pairwise distinct reals, then [Formula: see text] exists and is [Formula: see text]-iterable. The proof yields that [Formula: see text] determinacy implies that [Formula: see text] exists and is [Formula: see text]-iterable for all reals [Formula: see text]. A consequence is the Determinacy Transfer Theorem for arbitrary [Formula: see text], namely the statement that [Formula: see text] determinacy implies [Formula: see text] determinacy.


2019 ◽  
Vol 85 (1) ◽  
pp. 338-366 ◽  
Author(s):  
JUAN P. AGUILERA ◽  
SANDRA MÜLLER

AbstractWe determine the consistency strength of determinacy for projective games of length ω2. Our main theorem is that $\Pi _{n + 1}^1 $-determinacy for games of length ω2 implies the existence of a model of set theory with ω + n Woodin cardinals. In a first step, we show that this hypothesis implies that there is a countable set of reals A such that Mn (A), the canonical inner model for n Woodin cardinals constructed over A, satisfies $$A = R$$ and the Axiom of Determinacy. Then we argue how to obtain a model with ω + n Woodin cardinal from this.We also show how the proof can be adapted to investigate the consistency strength of determinacy for games of length ω2 with payoff in $^R R\Pi _1^1 $ or with σ-projective payoff.


2018 ◽  
Vol 83 (2) ◽  
pp. 496-528 ◽  
Author(s):  
GRIGOR SARGSYAN ◽  
RALF SCHINDLER

AbstractLet Msw denote the least iterable inner model with a strong cardinal above a Woodin cardinal. By [11], Msw has a fully iterable core model, ${K^{{M_{{\rm{sw}}}}}}$, and Msw is thus the least iterable extender model which has an iterable core model with a Woodin cardinal. In V, ${K^{{M_{{\rm{sw}}}}}}$ is an iterate of Msw via its iteration strategy Σ.We here show that Msw has a bedrock which arises from ${K^{{M_{{\rm{sw}}}}}}$ by telling ${K^{{M_{{\rm{sw}}}}}}$ a specific fragment ${\rm{\bar{\Sigma }}}$ of its own iteration strategy, which in turn is a tail of Σ. Hence Msw is a generic extension of $L[{K^{{M_{{\rm{sw}}}}}},{\rm{\bar{\Sigma }}}]$, but the latter model is not a generic extension of any inner model properly contained in it.These results generalize to models of the form Ms (x) for a cone of reals x, where Ms (x) denotes the least iterable inner model with a strong cardinal containing x. In particular, the least iterable inner model with a strong cardinal above two (or seven, or boundedly many) Woodin cardinals has a 2-small core model K with a Woodin cardinal and its bedrock is again of the form $L[K,{\rm{\bar{\Sigma }}}]$.


2018 ◽  
Vol 169 (4) ◽  
pp. 312-332 ◽  
Author(s):  
Merlin Carl ◽  
Philipp Schlicht ◽  
Philip Welch
Keyword(s):  

2017 ◽  
Vol 82 (4) ◽  
pp. 1229-1251
Author(s):  
TREVOR M. WILSON

AbstractWe prove several equivalences and relative consistency results regarding generic absoluteness beyond Woodin’s ${\left( {{\bf{\Sigma }}_1^2} \right)^{{\rm{u}}{{\rm{B}}_\lambda }}}$ generic absoluteness result for a limit of Woodin cardinals λ. In particular, we prove that two-step $\exists ^ℝ \left( {{\rm{\Pi }}_1^2 } \right)^{{\rm{uB}}_\lambda } $ generic absoluteness below a measurable limit of Woodin cardinals has high consistency strength and is equivalent, modulo small forcing, to the existence of trees for ${\left( {{\bf{\Pi }}_1^2} \right)^{{\rm{u}}{{\rm{B}}_\lambda }}}$ formulas. The construction of these trees uses a general method for building an absolute complement for a given tree T assuming many “failures of covering” for the models $L\left( {T,{V_\alpha }} \right)$ for α below a measurable cardinal.


2017 ◽  
Vol 82 (3) ◽  
pp. 1106-1131 ◽  
Author(s):  
PHILIPP LÜCKE ◽  
RALF SCHINDLER ◽  
PHILIPP SCHLICHT

AbstractWe study Σ1(ω1)-definable sets (i.e., sets that are equal to the collection of all sets satisfying a certain Σ1-formula with parameter ω1 ) in the presence of large cardinals. Our results show that the existence of a Woodin cardinal and a measurable cardinal above it imply that no well-ordering of the reals is Σ1(ω1)-definable, the set of all stationary subsets of ω1 is not Σ1(ω1)-definable and the complement of every Σ1(ω1)-definable Bernstein subset of ${}_{}^{{\omega _1}}\omega _1^{}$ is not Σ1(ω1)-definable. In contrast, we show that the existence of a Woodin cardinal is compatible with the existence of a Σ1(ω1)-definable well-ordering of H(ω2) and the existence of a Δ1(ω1)-definable Bernstein subset of ${}_{}^{{\omega _1}}\omega _1^{}$. We also show that, if there are infinitely many Woodin cardinals and a measurable cardinal above them, then there is no Σ1(ω1)-definable uniformization of the club filter on ω1. Moreover, we prove a perfect set theorem for Σ1(ω1)-definable subsets of ${}_{}^{{\omega _1}}\omega _1^{}$, assuming that there is a measurable cardinal and the nonstationary ideal on ω1 is saturated. The proofs of these results use iterated generic ultrapowers and Woodin’s ℙmax-forcing. Finally, we also prove variants of some of these results for Σ1(κ)-definable subsets of κκ, in the case where κ itself has certain large cardinal properties.


2017 ◽  
pp. 172-205
Author(s):  
Moti Gitik ◽  
Ralf Schindler ◽  
Saharon Shelah
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document