AbstractWe obtain Harnack estimates for a class of curvature flows in Riemannian manifolds of constant nonnegative sectional curvature as well as in the Lorentzian Minkowski and de Sitter spaces. Furthermore, we prove a Harnack estimate with a bonus term for mean curvature flow in locally symmetric Riemannian Einstein manifolds of nonnegative sectional curvature. Using a concept of “duality” for strictly convex hypersurfaces, we
also obtain a new type of inequality, so-called “pseudo”-Harnack inequality, for expanding flows in the sphere and in the hyperbolic space.