referent configuration
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2019 ◽  
Author(s):  
S Balamurugan ◽  
Dhanush Rachaveti ◽  
Varadhan SKM

AbstractForce produced during an isometric finger force production task tends to drift towards a lower magnitude when visual information is occluded. This phenomenon of drift in force without one’s awareness is called unintentional drift. The present study used epilogue, a particular case of post-trial visual feedback, and compared the unintentional drift for two conditions, i.e., with and without the epilogue. For this purpose, fourteen healthy participants were recruited for the experiments and were instructed to produce fingertip forces using four fingers of the right hand with the target line at 15% MVC. A trial lasted for sixteen seconds, where for the initial eight seconds, there is visual feedback followed by the visual occlusion period. The results showed a significant reduction in unintentional drift for the condition involving epilogue when compared to no epilogue. This reduction in drift is due to the shift in the referent configuration parameter by the phenomenon of RC back coupling. Further, we also claim that there might be a distribution of λs or RCs, based on the history of tuning of the control parameter by the central controller. This distribution of λs selected by the central controller in a redundant environment based on the epilogue resulted in a reduction of unintentional drift.


2017 ◽  
Vol 117 (1) ◽  
pp. 303-315 ◽  
Author(s):  
Yosuke Tomita ◽  
Anatol G. Feldman ◽  
Mindy F. Levin

Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces. Within these constraints, the system tends to minimize the difference between these configurations. For pointing movement, this strategy can be expressed as the tendency to minimize the difference between the referent trajectory (RT) and actual trajectory (QT) of the effector (hand). This process may underlie motor equivalent behavior that maintains the pointing trajectory regardless of the number of body segments involved. We tested the hypothesis that the minimization process is used to produce pointing in standing subjects. With eyes closed, 10 subjects reached from a standing position to a remembered target located beyond arm length. In randomly chosen trials, hip flexion was unexpectedly prevented, forcing subjects to take a step during pointing to prevent falling. The task was repeated when subjects were instructed to intentionally take a step during pointing. In most cases, reaching accuracy and trajectory curvature were preserved due to adaptive condition-specific changes in interjoint coordination. Results suggest that referent control and the minimization process associated with it may underlie motor equivalence in pointing.NEW & NOTEWORTHY Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching.


Motor Control ◽  
2015 ◽  
Vol 19 (2) ◽  
pp. 131-134 ◽  
Author(s):  
Kelly J. Cole

In the target article Mark Latash has argued that there is but a single bona-fide theory for hand motor control (referent configuration theory). If this is true, and research is often phenomenological, then we must admit that the science of hand motor control is immature. While describing observations under varying conditions is a crucial (but early) stage of the science of any field, it is also true that the key to maturing any science is to vigorously subject extant theories and budding laws to critical experimentation. If competing theories are absent at the present time is it time for scientists to focus their efforts on maturing the science of hand motor control through critical testing of this long-standing theory (and related collections of knowledge such as the uncontrolled manifold)?


Motor Control ◽  
2015 ◽  
Vol 19 (2) ◽  
pp. 142-148 ◽  
Author(s):  
Robert L. Sainburg

The purpose of this commentary is to discuss factors that limit consideration of the equilibrium point hypothesis as a scientific theory. The EPH describes control of motor neuron threshold through the variable lambda, which corresponds to a unique referent configuration for a muscle, joint, or combination of joints. One of the most compelling features of the equilibrium point hypothesis is the integration of posture and movement control into a single mechanism. While the essential core of the hypothesis is based upon spinal circuitry interacting with peripheral mechanics, the proponents have extended the theory to include the higher-level processes that generate lambda, and in doing so, imposed an injunction against the supraspinal nervous system modeling, computing, or predicting dynamics. This limitation contradicts evidence that humans take account of body and environmental dynamics in motor selection, motor control, and motor adaptation processes. A number of unresolved limitations to the EPH have been debated in the literature for many years, including whether muscle resistance to displacement, measured during movement, is adequate to support this form of control, violations in equifinality predictions, spinal circuits that alter the proposed invariant characteristic for muscles, and limitations in the description of how the complexity of spinal circuitry might be integrated to yield a unique and stable equilibrium position for a given motor neuron threshold. In addition, an important empirical limitation of EPH is the measurement of the invariant characteristic, which needs to be done under a constant central state. While there is no question that the EPH is an elegant and generative hypothesis for motor control research, the claim that this hypothesis has reached the status of a scientific theory is premature.


2000 ◽  
Vol 283 (1) ◽  
pp. 65-68 ◽  
Author(s):  
Francis G. Lestienne ◽  
Francine Thullier ◽  
Philippe Archambault ◽  
Mindy F. Levin ◽  
Anatol G. Feldman

Sign in / Sign up

Export Citation Format

Share Document