upper visual field
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 22)

H-INDEX

11
(FIVE YEARS 3)

Author(s):  
Shangen Zhang ◽  
Xiaogang Chen ◽  
Yijun Wang ◽  
Baolin Liu ◽  
Xiaorong Gao

Abstract Objective. Visual attention is not homogeneous across the visual field, while how to mine the effective EEG characteristics that are sensitive to the inhomogeneous of visual attention and further explore applications such as the performance of brain-computer interface (BCI) are still distressing explorative scientists. Approach. Images were encoded into a rapid serial visual presentation (RSVP) paradigm, and were presented in three visuospatial patterns (central, left/right, upper/lower) at the stimulation frequencies of 10Hz, 15Hz and 20Hz. The comparisons among different visual fields were conducted in the dimensions of subjective behavioral and EEG characteristics. Furthermore, the effective features (e.g. SSVEP, N2pc and P300) that sensitive to visual-field asymmetry were also explored. Results. The visual fields had significant influences on the performance of RSVP target detection, in which the performance of central was better than that of peripheral visual field, the performance of horizontal meridian was better than that of vertical meridian, the performance of left visual field was better than that of right visual field, and the performance of upper visual field was better than that of lower visual field. Furthermore, stimuli of different visual fields had significant effects on the spatial distributions of EEG, in which N2pc and P300 showed left-right asymmetry in occipital and frontal regions, respectively. In addition, the evidences of SSVEP characteristics indicated that there was obvious overlap of visual fields on the horizontal meridian, but not on the vertical meridian. Significance. The conclusions of this study provide insights into the relationship between visual field inhomogeneous and EEG characteristics. In addition, this study has the potential to achieve precise positioning of the target's spatial orientation in RSVP-BCIs.


2021 ◽  
Vol 21 (9) ◽  
pp. 2058
Author(s):  
Shuma Tsurumi ◽  
So Kanazawa ◽  
Masami K. Yamaguchi ◽  
Jun Kawahara

2021 ◽  
Author(s):  
Einat Hauzman ◽  
Michele E.R. Pierotti ◽  
Nihar Bhattacharyya ◽  
Juliana H. Tashiro ◽  
Carola A.M. Yovanovich ◽  
...  

AbstractSnakes are known to express a rod visual opsin and two cone opsins, only (SWS1, LWS), a reduced palette resulting from their supposedly fossorial origins. Dipsadid snakes in the genus Helicops are highly visual predators that successfully invaded freshwater habitats from ancestral terrestrial-only habitats. Here we report the first case of multiple SWS1 visual pigments in a vertebrate, simultaneously expressed in different photoreceptors and conferring both UV and violet sensitivity to Helicops snakes. Molecular analysis and in vitro expression confirmed the presence of two functional SWS1 opsins, likely the result of recent gene duplication. Evolutionary analyses indicate that each sws1 variant has undergone different evolutionary paths, with strong purifying selection acting on the UV-sensitive copy and dN/dS ∼1 on the violet-sensitive copy. Site-directed mutagenesis points to the functional role of a single amino acid substitution, Phe86Val, in the large spectral shift between UV and violet opsins. In addition, higher densities of photoreceptors and SWS1 cones in the ventral retina suggest improved acuity in the upper visual field possibly correlated with visually-guided behaviors. The expanded visual opsin repertoire and specialized retinal architecture are likely to improve photon uptake in underwater and terrestrial environments, and provide the neural substrate for a gain in chromatic discrimination, potentially conferring unique color vision in the UV-violet range. Our findings highlight the innovative solutions undertaken by a highly specialized lineage to tackle the challenges imposed by the invasion of novel photic environments and the extraordinary diversity of evolutionary trajectories taken by visual opsin-based perception in vertebrates.


2021 ◽  
Author(s):  
Katrin Franke ◽  
Konstantin F. Willeke ◽  
Kayla Ponder ◽  
Mario Galdamez ◽  
Taliah Muhammad ◽  
...  

Across animal species, sensory processing dynamically adapts to behavioral context. In the mammalian visual system, sensory neural responses and behavioral performance increase during an active behavioral state characterized by locomotion activity and pupil dilation, whereas preferred stimuli of individual neurons typically remain unchanged. Here, we address how behavioral states modulate stimulus selectivity in the context of colored natural scenes using a combination of large-scale population imaging, behavior, pharmacology, and deep neural network modeling. In visual cortex of awake mice, we identified a consistent shift of individual neuron color preferences towards ultraviolet stimuli during active behavioral periods that was particularly pronounced in the upper visual field. We found that the spectral shift in neural tuning is mediated by pupil dilation, resulting in a dynamic switch from rod- to cone-driven visual responses for constant ambient light levels. We further showed that this shift selectively enhances the discriminability of ultraviolet objects and facilitates the detection of ethological stimuli, such as aerial predators against the ultraviolet background of the twilight sky. Our results suggest a novel functional role for pupil dilation during active behavioral states as a bottom-up mechanism that, together with top-down neuromodulatory mechanisms, dynamically tunes visual representations to different behavioral demands.


2021 ◽  
Author(s):  
Hua-Chun Sun ◽  
Damien John Mannion

Gloss is an aspect of surface perception that is important for understanding the material properties of the environment. Because a surface can stimulate any region of the visual field during natural viewing, it is of interest to measure the potential influence of visual field asymmetries on perceived gloss—as such asymmetries could make the perception of gloss dependent on the visual field location. Here, our aim was to compare the apparent glossiness of renderings of nondescript objects when positioned in the lower and upper regions of the visual field. In Experiment 1, participants (n=20) evaluated the glossiness of objects presented simultaneously below and above central fixation. Estimates of the specular reflectance required for perceptual gloss equality indicated little effect of the visual field location. In Experiment 2, participants (n=19) compared the magnitude of gloss differences across two pairs of objects in either the lower or the upper visual field. Estimates of the exponent relating specular reflectance to a gloss difference scale and a noise parameter again indicated little effect of the visual field location. Overall, these estimates are consistent with the existence of a high degree of gloss constancy across presentations in the lower and upper visual fields.


2020 ◽  
Author(s):  
Yongrong Qiu ◽  
Zhijian Zhao ◽  
David Klindt ◽  
Magdalena Kautzky ◽  
Klaudia P. Szatko ◽  
...  

SummaryPressures for survival drive sensory circuit adaption to a species’ habitat, making it essential to statistically characterise natural scenes. Mice, a prominent visual system model, are dichromatic with enhanced sensitivity to green and UV. Their visual environment, however, is rarely considered. Here, we built a UV-green camera to record footage from mouse habitats. We found chromatic contrast to greatly diverge in the upper but not the lower visual field, an environmental difference that may underlie the species’ superior colour discrimination in the upper visual field. Moreover, training an autoencoder on upper but not lower visual field scenes was sufficient for the emergence of colour-opponent filters. Furthermore, the upper visual field was biased towards dark UV contrasts, paralleled by more light-offset-sensitive cells in the ventral retina. Finally, footage recorded at twilight suggests that UV promotes aerial predator detection. Our findings support that natural scene statistics shaped early visual processing in evolution.Lead contactFurther information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Thomas Euler ([email protected])


2020 ◽  
Vol 1 ◽  
Author(s):  
Kanon Fujimoto ◽  
Hiroshi Ashida

Humans perceive self-motion using multisensory information, while vision has a dominant role as is utilized in virtual reality (VR) technologies. Previous studies reported that visual motion presented in the lower visual field (LoVF) induces stronger illusion of self-motion (vection) as compared with the upper visual field (UVF). However, it was still unknown whether the LoVF superiority in vection was based on the retinotopic frame, or rather related to the environmental frame of reference. Here, we investigated the influences of retinotopic and environmental frames on the LoVF superiority of vection. We presented a planer surface along the depth axis in one of four visual fields (upper, lower, right, or left). The texture on the surface moved forward or backward. Participants reported vection while observing the visual stimulus through a VR head mounted display (HMD) in the sitting posture or lateral recumbent position. Results showed that the visual motion induced stronger vection when presented in the LoVF compared with the UVF in both postures. Notably, the vection rating in LoVF was stronger in the sitting than in the recumbent. Moreover, recumbent participants reported stronger vection when the stimulus was presented in the gravitationally lower field than in the gravitationally upper field. These results demonstrate contribution of multiple spatial frames on self-motion perception and imply the importance of ground surface.


Author(s):  
I. Rhim ◽  
G. Coello-Reyes ◽  
I. Nauhaus

ABSTRACTVisual input to primary visual cortex (V1) depends on highly adaptive filtering in the retina. In turn, isolation of V1 computations to study cortical circuits requires control over retinal adaption and its corresponding spatio-temporal-chromatic output. Here, we first measure the balance of input to V1 from the three main photoreceptor opsins – M-opsin, S-opsin, and rhodopsin – as a function of light adaption and retinotopy. Results show that V1 is rod-mediated in common laboratory settings, yet cone-mediated in natural daylight, as evidenced by exclusive sensitivity to UV wavelengths via cone S-opsin in the upper visual field. Next, we show that cone-mediated V1 responds to 2.5-fold higher temporal frequencies than rod-mediated V1. Furthermore, cone-mediated V1 has smaller RFs, yet similar spatial frequency tuning. V1 responses in rod-deficient (Gnat1−/−) mice confirm that the effects are due to differences in photoreceptor contribution. This study provides foundation for using mouse V1 to study cortical circuits.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Klaudia P. Szatko ◽  
Maria M. Korympidou ◽  
Yanli Ran ◽  
Philipp Berens ◽  
Deniz Dalkara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document