pufm gene
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

2020 ◽  
Vol 8 (2) ◽  
pp. 150
Author(s):  
Akira Hiraishi ◽  
Nobuyoshi Nagao ◽  
Chinatsu Yonekawa ◽  
So Umekage ◽  
Yo Kikuchi ◽  
...  

The biodiversity of phototrophic purple nonsulfur bacteria (PNSB) in comparison with purple sulfur bacteria (PSB) in colored blooms and microbial mats that developed in coastal mudflats and pools and wastewater ditches was investigated. For this, a combination of photopigment and quinone profiling, pufM gene-targeted quantitative PCR, and pufM gene clone library analysis was used in addition to conventional microscopic and cultivation methods. Red and pink blooms in the coastal environments contained PSB as the major populations, and smaller but significant densities of PNSB, with members of Rhodovulum predominating. On the other hand, red-pink blooms and mats in the wastewater ditches exclusively yielded PNSB, with Rhodobacter, Rhodopseudomonas, and/or Pararhodospirillum as the major constituents. The important environmental factors affecting PNSB populations were organic matter and sulfide concentrations and oxidation–reduction potential (ORP). Namely, light-exposed, sulfide-deficient water bodies with high-strength organic matter and in a limited range of ORP provide favorable conditions for the massive growth of PNSB over co-existing PSB. We also report high-quality genome sequences of Rhodovulum sp. strain MB263, previously isolated from a pink mudflat, and Rhodovulum sulfidophilum DSM 1374T, which would enhance our understanding of how PNSB respond to various environmental factors in the natural ecosystem.


2012 ◽  
Vol 27 (3) ◽  
pp. 327-329 ◽  
Author(s):  
Setsuko Hirose ◽  
Kenji V. P. Nagashima ◽  
Katsumi Matsuura ◽  
Shin Haruta

2011 ◽  
Vol 13 (11) ◽  
pp. 2865-2875 ◽  
Author(s):  
Ivette Salka ◽  
Zuzana Čuperová ◽  
Michal Mašín ◽  
Michal Koblížek ◽  
Hans-Peter Grossart

2011 ◽  
Vol 8 (7) ◽  
pp. 1955-1970 ◽  
Author(s):  
C. Jeanthon ◽  
D. Boeuf ◽  
O. Dahan ◽  
F. Le Gall ◽  
L. Garczarek ◽  
...  

Abstract. Aerobic anoxygenic phototrophic (AAP) bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a), the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 54 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94 %) was affiliated to the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies between culture-based and molecular methods, this study highlights the existing gaps in the understanding of the AAP bacteria ecology, especially in the Mediterranean Sea and likely globally.


2011 ◽  
Vol 8 (3) ◽  
pp. 4421-4457 ◽  
Author(s):  
C. Jeanthon ◽  
D. Boeuf ◽  
O. Dahan ◽  
F. Le Gall ◽  
L. Garczarek ◽  
...  

Abstract. Aerobic anoxygenic phototrophic (AAP) bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a), the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 52 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94%) was affiliated with the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies between culture-based and molecular methods, this study highlights the existing gaps in the understanding of the AAP bacteria ecology, especially in the Mediterranean Sea and likely globally.


Sign in / Sign up

Export Citation Format

Share Document