slope excavation
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 22)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Wei Liu ◽  
Jian Lu ◽  
YingShuang Yuan ◽  
HongQing Yang ◽  
Chi Jia
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5131
Author(s):  
Marek Wyjadłowski ◽  
Janusz V. Kozubal ◽  
Zofia Zięba ◽  
Dmitri Steshenko ◽  
Dariusz Krupowies

The purpose of this paper is to describe the variability of soil rheological properties based on research carried out using load tests of ground anchors under complex geotechnical conditions. The heterogeneity of soil should always be considered when designing geotechnical constructions. In the present case, the earthwork created at the Warsaw Slope revealed an embankment of anthropogenic origin, located in a geologically and geomorphologically complex area of the Vistula valley slope. Excavation protection was anchored mainly in soils of anthropogenic origin. When the acceptance tests of the ground anchor were completed, the subsoil randomness was confirmed using nondirect, geostatistical methods. A standard solid rheological model with nonlinear fitting to the data was used. This model was established to describe the creeping activity of the ground anchor more accurately. The characteristics of man-made embankments were described using the parameters obtained with the rheological model of the subsoil.


2021 ◽  
Vol 1972 (1) ◽  
pp. 012116
Author(s):  
Yuan Hailiang ◽  
Chen Chen ◽  
Yu Jianxin ◽  
Liu Xiaoyi ◽  
Dong Bin

Author(s):  
James V. Hamel

ABSTRACT On March 20, 1941, more than 110,000 yd3 (84,000 m3) of rock slumped from Brilliant Cut in Pittsburgh, Pennsylvania. Failure was triggered by water pressure buildup due to ice blockage of drainage outlets on the slope face. I investigated this slide as part of my Ph.D. research at the University of Pittsburgh in 1968–1969 and have continued to study it. Historical photographs discovered in 1997 provided new insights on the construction and failure of Brilliant Cut and led to this re-evaluation. In this paper, my 1968–1969 work is summarized and then additional geological and historical information is presented along with key observations from the historical photographs. These photographs reveal that slope excavation at Brilliant Cut in 1930–1931 removed lateral support, in turn initiating stress release and progressive failure that loosened or broke bedrock adjacent to the cut. This fractured rock mass remained marginally stable for a decade but then collapsed in March 1941. The 1941 failure was triggered by water held back in rock fractures by a frozen crust over talus and fractured rock on the slope face. A progressive failure mechanism by Brooker and Peck explains the behavior of Brilliant Cut from 1931 to 1941. Sliding Block stability analyses demonstrate the mechanism of progressive failure and suggest that friction angles were reduced gradually to near-residual values along the failure surface, with low water levels in the slope. With drainage blocked in 1941, a water level developed about 30 ft (9 m) above the basal failure surface to initiate the catastrophic failure. This water level is below that previously inferred to have existed at the time of failure.


Author(s):  
Katsuo Sasahara ◽  
Nobutaka Hiraoka ◽  
Naotaka Kikkawa ◽  
Kazuya Itoh

AbstractMultistep excavations were implemented at the toe of a large-scale slope model, and the surface displacements in the slope were measured to examine the validity of the relationship between the velocity and acceleration proposed by Fukuzono for excavated slopes. The surface displacement increased both during and after slope excavation, among which the latter was due to creep deformation under a constant stress. The rate of increase in the surface displacement was initially high and then decreased to zero during creep deformation after the excavation without slope failure. However, the surface displacement exhibited an accelerated increase during creep deformation after the final excavation prior to slope failure; the surface displacement increased with small fluctuations even before slope failure occurred. The surface displacement velocity and acceleration also fluctuated notably due to variations in the surface displacement. The trendlines for the derived relationships between the velocity and acceleration were in good general agreement with the measured data at certain locations in the model slope. These relationships were unique at different locations on the slope, while the inclination of the relationship trendline suddenly decreased just prior to slope failure. The steeper trendlines predicted an earlier failure time if the displacement was large and close to the failure condition, whereas they resulted in worse predictions if the displacement was small and far from causing slope failure according to the prediction method proposed by Fukuzono.


Sign in / Sign up

Export Citation Format

Share Document