catastrophic interference
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 19)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Suryanarayana Maddu Maddu ◽  
Dominik Sturm ◽  
Christian L. Müller ◽  
Ivo F. Sbalzarini

Abstract We characterize and remedy a failure mode that may arise from multi-scale dynamics with scale imbalances during training of deep neural networks, such as Physics Informed Neural Networks (PINNs). PINNs are popular machine-learning templates that allow for seamless integration of physical equation models with data. Their training amounts to solving an optimization problem over a weighted sum of data-fidelity and equation-fidelity objectives. Conflicts between objectives can arise from scale imbalances, heteroscedasticity in the data, stiffness of the physical equation, or from catastrophic interference during sequential training. We explain the training pathology arising from this and propose a simple yet effective inverse Dirichlet weighting strategy to alleviate the issue. We compare with Sobolev training of neural networks, providing the baseline of analytically ε-optimal training. We demonstrate the effectiveness of inverse Dirichlet weighting in various applications, including a multi-scale model of active turbulence, where we show orders of magnitude improvement in accuracy and convergence over conventional PINN training. For inverse modeling using sequential training, we find that inverse Dirichlet weighting protects a PINN against catastrophic forgetting.


2021 ◽  
Vol 118 (39) ◽  
pp. e2017239118
Author(s):  
Zhen Zhang ◽  
Sandip Mondal ◽  
Subhasish Mandal ◽  
Jason M. Allred ◽  
Neda Alsadat Aghamiri ◽  
...  

Habituation and sensitization (nonassociative learning) are among the most fundamental forms of learning and memory behavior present in organisms that enable adaptation and learning in dynamic environments. Emulating such features of intelligence found in nature in the solid state can serve as inspiration for algorithmic simulations in artificial neural networks and potential use in neuromorphic computing. Here, we demonstrate nonassociative learning with a prototypical Mott insulator, nickel oxide (NiO), under a variety of external stimuli at and above room temperature. Similar to biological species such as Aplysia, habituation and sensitization of NiO possess time-dependent plasticity relying on both strength and time interval between stimuli. A combination of experimental approaches and first-principles calculations reveals that such learning behavior of NiO results from dynamic modulation of its defect and electronic structure. An artificial neural network model inspired by such nonassociative learning is simulated to show advantages for an unsupervised clustering task in accuracy and reducing catastrophic interference, which could help mitigate the stability–plasticity dilemma. Mott insulators can therefore serve as building blocks to examine learning behavior noted in biology and inspire new learning algorithms for artificial intelligence.


2021 ◽  
Author(s):  
Tiantian Zhang ◽  
Xueqian Wang ◽  
Bin Liang ◽  
Bo Yuan

The powerful learning ability of deep neural networks enables reinforcement learning (RL) agents to learn competent control policies directly from high-dimensional and continuous environments. In theory, to achieve stable performance, neural networks assume i.i.d. inputs, which unfortunately does no hold in the general RL paradigm where the training data is temporally correlated and non-stationary. This issue may lead to the phenomenon of "catastrophic interference" (a.k.a. "catastrophic forgetting") and the collapse in performance as later training is likely to overwrite and interfer with previously learned good policies. In this paper, we introduce the concept of "context" into the single-task RL and develop a novel scheme, termed as Context Division and Knowledge Distillation (CDaKD) driven RL, to divide all states experienced during training into a series of contexts. Its motivation is to mitigate the challenge of aforementioned catastrophic interference in deep RL, thereby improving the stability and plasticity of RL models. At the heart of CDaKD is a value function, parameterized by a neural network feature extractor shared across all contexts, and a set of output heads, each specializing on an individual context. In CDaKD, we exploit online clustering to achieve context division, and interference is further alleviated by a knowledge distillation regularization term on the output layers for learned contexts. In addition, to effectively obtain the context division in high-dimensional state spaces (e.g., image inputs), we perform clustering in the lower-dimensional representation space of a randomly initialized convolutional encoder, which is fixed throughout training. Our results show that, with various replay memory capacities, CDaKD can consistently improve the performance of existing RL algorithms on classic OpenAI Gym tasks and the more complex high-dimensional Atari tasks, incurring only moderate computational overhead.


2021 ◽  
Author(s):  
Tiantian Zhang ◽  
Xueqian Wang ◽  
Bin Liang ◽  
Bo Yuan

The powerful learning ability of deep neural networks enables reinforcement learning (RL) agents to learn competent control policies directly from high-dimensional and continuous environments. In theory, to achieve stable performance, neural networks assume i.i.d. inputs, which unfortunately does no hold in the general RL paradigm where the training data is temporally correlated and non-stationary. This issue may lead to the phenomenon of "catastrophic interference" (a.k.a. "catastrophic forgetting") and the collapse in performance as later training is likely to overwrite and interfer with previously learned good policies. In this paper, we introduce the concept of "context" into the single-task RL and develop a novel scheme, termed as Context Division and Knowledge Distillation (CDaKD) driven RL, to divide all states experienced during training into a series of contexts. Its motivation is to mitigate the challenge of aforementioned catastrophic interference in deep RL, thereby improving the stability and plasticity of RL models. At the heart of CDaKD is a value function, parameterized by a neural network feature extractor shared across all contexts, and a set of output heads, each specializing on an individual context. In CDaKD, we exploit online clustering to achieve context division, and interference is further alleviated by a knowledge distillation regularization term on the output layers for learned contexts. In addition, to effectively obtain the context division in high-dimensional state spaces (e.g., image inputs), we perform clustering in the lower-dimensional representation space of a randomly initialized convolutional encoder, which is fixed throughout training. Our results show that, with various replay memory capacities, CDaKD can consistently improve the performance of existing RL algorithms on classic OpenAI Gym tasks and the more complex high-dimensional Atari tasks, incurring only moderate computational overhead.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2678
Author(s):  
Sergey A. Lobov ◽  
Alexey I. Zharinov ◽  
Valeri A. Makarov ◽  
Victor B. Kazantsev

Cognitive maps and spatial memory are fundamental paradigms of brain functioning. Here, we present a spiking neural network (SNN) capable of generating an internal representation of the external environment and implementing spatial memory. The SNN initially has a non-specific architecture, which is then shaped by Hebbian-type synaptic plasticity. The network receives stimuli at specific loci, while the memory retrieval operates as a functional SNN response in the form of population bursts. The SNN function is explored through its embodiment in a robot moving in an arena with safe and dangerous zones. We propose a measure of the global network memory using the synaptic vector field approach to validate results and calculate information characteristics, including learning curves. We show that after training, the SNN can effectively control the robot’s cognitive behavior, allowing it to avoid dangerous regions in the arena. However, the learning is not perfect. The robot eventually visits dangerous areas. Such behavior, also observed in animals, enables relearning in time-evolving environments. If a dangerous zone moves into another place, the SNN remaps positive and negative areas, allowing escaping the catastrophic interference phenomenon known for some AI architectures. Thus, the robot adapts to changing world.


2020 ◽  
Vol 400 ◽  
pp. 73-85
Author(s):  
Sergey Sukhov ◽  
Mikhail Leontev ◽  
Alexander Miheev ◽  
Kirill Sviatov

Sign in / Sign up

Export Citation Format

Share Document