mass lumping
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 15)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
S Pal ◽  
S Haldar ◽  
K Kalita

An isoparametric plate bending element with nine nodes is used in this paper for dynamic analysis of isotropic cut-out plate having concentrated and uniformly distributed mass on the plate. The Mindlin’s first-order shear deformation theory (FSDT) is used in the present finite element formulation. Two proportionate mass lumping schemes are used. The effect of rotary inertia is included in one of the mass lumping schemes in the present element formulation. Dynamic analysis of rectangular isotropic plates with cut-out having different side ratio, thickness ratio and boundary condition is analysed using a finite element method. The present results are compared with the published results. Some new results on isotropic plates with cut-out having different side ratio, ratio of side-to-thickness of the plate, different position and size of cut-out in plates subjected to transversely concentrated and distributed mass are presented.


2021 ◽  
Vol 13 (01) ◽  
pp. 2150013
Author(s):  
Songyang Hou ◽  
Xiwei Li ◽  
Dongdong Wang ◽  
Zhiwei Lin

A mid-node mass lumping scheme is proposed to formulate the lumped mass matrices of serendipity elements for accurate structural vibration analysis. Since the row-sum technique leads to unacceptable negative lumped mass components for serendipity elements, the diagonal scaling HRZ method is frequently employed to construct lumped mass matrices of serendipity elements. In this work, through introducing a lumped mass matrix template that includes the HRZ lumped mass matrix as a special case, an analytical frequency accuracy measure is rationally derived with particular reference to the classical eight-node serendipity element. The theoretical results clearly reveal that the standard HRZ mass matrix actually does not offer the optimal frequency accuracy in accordance with the given lumped mass matrix template. On the other hand, by employing the nature of non-negative shape functions associated with the mid-nodes of serendipity elements, a mid-node lumped mass matrix (MNLM) formulation is introduced for the mass lumping of serendipity elements without corner nodal mass components, which essentially corresponds to the optimal frequency accuracy in the context of the given lumped mass matrix template. Both theoretical and numerical results demonstrate that MNLM yields better frequency accuracy than the standard HRZ lumped mass matrix formulation for structural vibration analysis.


Computation ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 98
Author(s):  
Mohammad Islam ◽  
Nicolas Huerta ◽  
Robert Dilmore

Carbon capture, utilization, and storage (CCUS) describes a set of technically viable processes to separate carbon dioxide (CO2) from industrial byproduct streams and inject it into deep geologic formations for long-term storage. Legacy wells located within the spatial domain of new injection and production activities represent potential pathways for fluids (i.e., CO2 and aqueous phase) to leak through compromised components (e.g., through fractures or micro-annulus pathways). The finite element (FE) method is a well-established numerical approach to simulate the coupling between multi-phase fluid flow and solid phase deformation interactions that occur in a compromised well system. We assumed the spatial domain consists of a three-phases system: a solid, liquid, and gas phase. For flow in the two fluids phases, we considered two sets of primary variables: the first considering capillary pressure and gas pressure (PP) scheme, and the second considering liquid pressure and gas saturation (PS) scheme. Fluid phases were coupled with the solid phase using the full coupling (i.e., monolithic coupling) and iterative coupling (i.e., sequential coupling) approaches. The challenge of achieving numerical stability in the coupled formulation in heterogeneous media was addressed using the mass lumping and the upwinding techniques. Numerical results were compared with three benchmark problems to assess the performance of coupled FE solutions: 1D Terzaghi’s consolidation, Liakopoulos experiments, and the Kueper and Frind experiments. We found good agreement between our results and the three benchmark problems. For the Kueper and Frind test, the PP scheme successfully captured the observed experimental response of the non-aqueous phase infiltration, in contrast to the PS scheme. These exercises demonstrate the importance of fluid phase primary variable selection for heterogeneous porous media. We then applied the developed model to the hypothetical case of leakage along a compromised well representing a heterogeneous media. Considering the mass lumping and the upwinding techniques, both the monotonic and the sequential coupling provided identical results, but mass lumping was needed to avoid numerical instabilities in the sequential coupling. Additionally, in the monolithic coupling, the magnitude of primary variables in the coupled solution without mass lumping and the upwinding is higher, which is essential for the risk-based analyses.


2020 ◽  
Vol 162 (A3) ◽  
Author(s):  
S Pal ◽  
S Haldar ◽  
K Kalita

An isoparametric plate bending element with nine nodes is used in this paper for dynamic analysis of isotropic cut-out plate having concentrated and uniformly distributed mass on the plate. The Mindlin’s first-order shear deformation theory (FSDT) is used in the present finite element formulation. Two proportionate mass lumping schemes are used. The effect of rotary inertia is included in one of the mass lumping schemes in the present element formulation. Dynamic analysis of rectangular isotropic plates with cut-out having different side ratio, thickness ratio and boundary condition is analysed using a finite element method. The present results are compared with the published results. Some new results on isotropic plates with cut-out having different side ratio, ratio of side-to-thickness of the plate, different position and size of cut-out in plates subjected to transversely concentrated and distributed mass are presented.


2019 ◽  
Vol 106 ◽  
pp. 190-200 ◽  
Author(s):  
Guohua Zhang ◽  
Yongtao Yang ◽  
Guanhua Sun ◽  
Hong Zheng

Sign in / Sign up

Export Citation Format

Share Document